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Introduction

The goal of this paper is to give an account of classical Tannaka duality [C⁄] in such a
way as to be accessible to the general mathematical reader, and to provide a key for entry to
more recent developments [⁄SR, DM⁄] and quantum groups [⁄D1⁄]. Expertise in neither
representation theory nor category theory is assumed.

Naively speaking, Tannaka duality theory is the study of the interplay which exists
between a group and the category of its representations. The early duality theorems of
Tannaka-Krein [Ta, Kr] concentrate on the problem of reconstructing a compact group from
the collection of its representations. In the abelian case, this problem amounts to
reconstructing the group from its character group, and is the content of the Pontrjagin
duality theorem. A good exposition of this theory can be found in the book by Chevalley
[C]. In these early developments, there was little or no use of categorical concepts, partly
because they did not exist at the time. Moreover, the mathematical community was not yet
familiar with category theory, and it was possible to avoid it [BtD].

To Grothendieck we owe the understanding that the process of Tannaka duality can
be reversed. In his work to solve the Weil conjectures, he constructed the category of
motives as the universal recipient of a Weil cohomology [Kl]. By using a fiber functor from
his category of motives to vector spaces, he could construct a pro-algebraic group  G.  He
also conjectured that the category of motives could be recaptured as the category of
representations of  G.  This group is called the Grothendieck Galois group, since it is an
extension of the Galois group of  _Q⁄⁄/Q . The work spreading from these ideas can be found
in [SR, DM]. For other aspects of this question, see [Cb].

An entirely different development came from mathematical physicists working on
superselection principles in quantum field theory [DHR] where it was discovered that the
superselection structure could be described in terms of a category whose objects are certain

endomorphisms of the C*-algebra of local observables, and whose arrows are intertwining
operators. Reversing the duality process, they succeeded in constructing a compact group
whose representations can be identified with their superselection category [DR].

Another impulse to the development of Tannaka duality comes from the theory of
quantum groups. These new mathematical objects were discovered by Jimbo [⁄J⁄] and
Drinfel'd [D1] in connection with the work of L.D. Faddeev and his collaborators on the
quantum inverse scattering method. V.V. Lyubashenko [Ly] initiated the use of Tannaka
duality in the construction of quantum groups; also see K.-H. Ulbrich [U]. We should also
mention S.L. Woronowicz [W] in the case of compact quantum groups. Recently, S. Majid
[M3] has shown that one can use Tannaka-Krein duality for constructing the quasi-Hopf
algebras introduced by Drinfel'd [D2] in connection with the solution of the Knizhnik-
Zamolodchikov equation.

The theory of angular momentum in Quantum Physics [BL1] might also provide
some extra motivation for studying Tannaka duality. The Racah-Wigner algebra, the  9⁄⁄– ⁄⁄j
and  3⁄⁄– ⁄⁄j  symbols, and, the Racah and Wigner coefficients, all seem to be about the explicit
description of the structures which exist on the category of representations of some
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compact groups like  SU(2)  or  SU(3) [BL2]. Here the theory of orthogonal polynomials and
special functions comes into play [AK]. Also, the q-analogues of the classical orthogonal
polynomials show up as spherical functions on quantum groups [Ko].

Another essential aspect of the picture that should be mentioned is the connection
between knot theory, Feynman diagrams, category theory, and quantum groups. It was
discovered by Turaev [T] that the new invariants found by Jones [Jn1] could be constructed
from Yang-Baxter operators. The method was formalised by showing that certain categories
constructed geometrically from tangles of strings or ribbons could be given a simple
algebraic presentation [T, FY2, JS1]. It is remarkable that notation, introduced by Penrose
[Pn] for calculating with ordinary tensors, has the right degree of generality to express
correctly the calculations in any tensor category [⁄JS2]. What is emerging here is a new
symbiosis between algebra, geometry and physics, the consequences of which are not yet
fully under-stood. A good review of the recent research on the whole subject is given by P.
Cartier [Ct].

After a brief review of Pontrjagin duality and Fourier transforms for locally compact
abelian groups, we give a treatment in Section 1 of the classical Tannaka theory for compact
(non-abelian) groups. In the compact case, representations must be considered, because
characters are no longer sufficient to recapture the compact group. There is also a notion of
Fourier transform applying, and we examine this in detail. Where possible we work with a
general topological monoid  M.  A central object of our analysis is the algebra  R(M)  of
representative complex-valued functions on  M. In Section 2, we show that  R(M)  is a
bialgebra and compute it in the case where  M  is the unitary group  U(n).

Section 3 and Section 4 begin the modern treatment of Tannaka reconstruction,
motivated at each stage by the example of a topological monoid. Instrumental here is the
Fourier cotransform which can be seen as the continuous predual of the Fourier transform.
In fact, the Fourier cotransform provides an isomorphism between the reconstructed object
and  R(M).

Section 5 is an introduction to Tannaka duality for homogeneous spaces [IS]. The
proof of the duality theorem of Section ⁄5 is independent of the proof of the one appearing
in Section 1.

Sections 6 and 7 are devoted to the characterization of the category of comodules
over a coalgebra. Sections 8 and 9 study extra structure which is possessed by the coalgebra
End⁄⁄(X)  of Section 4.

Section 10 introduces the concept of braided tensor categories and Yang-Baxter
operators at the appropriate level of generality. Section 11 is a brief description of the
categorical axiomatization of the geometry of knots and tangles.

Section 12 is a too brief introduction to quantum groups. There are many important
aspects of the theory of quantum groups which could be mentioned, such as the work of
Lusztig [Lu], Kashdan-Lusztig [KL], Rosso [R], and Deligne [D]. Our goal here is a modest
one (the paper is already much longer than our editors expected), and we apologize to those
whose work we have not mentioned.

Contents: Section 1: Classical Tannaka duality.
Section 2: The bialgebra of representative functions.
Section 3: The Fourier cotransform.
Section 4: The coalgebra  End⁄⁄(X).
Section 5: Tannaka duality for homogeneous spaces.
Section 6: Minimal models.
Section 7: The representation theorem.
Section 8: The bialgebra  End⁄⁄(X)  and tensor categories.
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Section 9: Duality and Hopf algebras.
Section 10: Braidings and Yang-Baxter operators.
Section 11: Knot invariants.
Section 12: Quantum groups.

§1. Classical Tannaka duality.

Before describing Tannaka duality, we briefly recall Pontrjagin duality. Let  G  be a
commutative locally-compact group. A character c of  G  is a continuous homomorphism

c :  G aaAT
where  T is the multiplicative group of complex numbers of modulus  1. The characters
form a group  G⁄ which is given the topology of uniform convergence on compact subsets
of  G.  It turns out that  G⁄ is locally compact. There is a canonical pairing

·  ,  Ò  :  G⁄⁄⁄⁄¥ G aaAT,
and we obtain a canonical homomorphism

i  :  G aaA(G⁄)⁄.

Theorem 1 (Pontrjagin). The canonical homomorphism i is an isomorphism o f
topological groups.

The group  G  is compact if and only if the dual group  G⁄ is discrete. We have  
T⁄⁄⁄⁄⁄ = Z⁄⁄⁄⁄ ,       Z⁄⁄⁄⁄⁄ = T,       R⁄ = R,       (Z/n)⁄ = Z/n.  

Many groups are self dual, such as the additive groups of the local fields.

Pontrjagin duality goes hand-in-hand with the theory of Fourier transforms which
we briefly describe. There is a positive measure  dx  on  G  called the Haar measure. It is the
unique (up to scalar multiple) Borel measure which is invariant under translations. Using
it, we can define the spaces  L1(G)  and  L2(G)  of integrable and square integrable functions.
The Fourier transform

F :  L1(G)«L⁄2 (G)  aaA L⁄2 ⁄⁄(G⁄)
is defined as follows

(F f)(s) = f(x) s , x dx .
G

Ú
The set  L1(G)«L⁄2 (G)  is a dense subspace of  L2(G) and we have:

Theorem 2 (Plancherel). With correct normalisation of the Haar measure ds  on  G⁄, t h e
mapping   f jAF f  extends uniquely to an isometry

F :  L⁄2 ⁄(G)  ahaA L⁄2 ⁄⁄(G⁄⁄).

The inverse transformation  F -1 is given by

F
-1(g )(x) = g(s) s, x ds .

G
⁄Ú

The measure  ds  on  G⁄  which produces the isometry is unique, and is called the measure
associated to  dx.  When  G  is compact, we often choose  dx  so that the total mass of  G  is 1.
In this case, the corresponding associated measure  ds  on the discrete group  G⁄  assigns
mass  1  to singletons.

It is an open problem to formulate and prove a general duality theorem for non-
commutative locally compact groups such as Lie groups. Even the case of simple algebraic
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groups is not well understood despite the enormous accumulating knowledge on their
irreducible representations. However, when the group is compact, there is a good duality
theory due to H. Peter, H. Weyl and T. Tannaka. In this case, the dual object  G⁄  is discrete
and so belongs to the realm of algebra. In order to describe this theory, it will be convenient
to introduce some of the needed concepts in a more general setting.

Let  M  be a topological monoid. A (finite) representation o f M consists of a finite-
dimensional complex vector space V together with a continuous homomorphism

pV :  M aaAEnd(V)
into the monoid  End(V)  of linear endomorphisms of  V.  Real representations are
defined using real vector spaces. We denote by Rep⁄(M,C⁄⁄⁄⁄) [respectively,  Rep⁄(M,⁄R)] the
category of all complex [respectively, real] finite representations of  M.  There is a forgetful
functor

U : Rep⁄(M,⁄⁄C) aaAVectC

where  VectC   denotes the category of all complex vector spaces. Recall that a natural
transformation  u : U ⁄⁄aAU is a family of maps  uV : V ⁄⁄aAV  indexed by  V ŒRep⁄(M, C⁄⁄⁄⁄)
such that the square 

V V

W W

u

u

V

W

h h

commutes for all morphisms h : V ⁄⁄aAW of representations (“intertwining operators”).
Clearly, each element  xŒM  produces such a natural transformation  p(x) : U ⁄⁄aAU whose
V  component is the element  pV(x) : V⁄⁄aAV.

There is a topology on the set  End(U ⁄)  of natural transformations from  U to  U .  It is
the coarsest topology rendering all the projections  ujAuV Œ End(V)  continuous.
Composition and addition of natural transformations turns  End(U ⁄)  into a topological
algebra. There is a conjugation operation

End(U ⁄) aaA End(U ⁄) ,            ujA-u ,
given by

u V(x) = u
V

(x)

where _V  denotes the conjugate representation of  V (the elements of the vector space  _V
are the same as those of  V  but the identity map  V ⁄⁄aA_V,  denoted xjA-x,  is an anti-
linear isomorphism).

We would like to characterize the natural transformations of the form  p(x).  Recall
that a natural transformation  u  is tensor preserving (or “monoidal”) when we have

uVƒW = uV ƒ uW and          uI  = 1I

where  I  denotes the trivial 1-dimensional representation of  M.  We say that  u  is self-
conjugate when  u = -u.  The set of tensor preserving self-conjugate transformations is a
closed subset of  End(U ⁄)  which is also closed under composition. We call this subset the
⁄⁄Tannaka m o n o i d of  M  and denote it by  T⁄⁄(M).  For any  x Œ M,  the natural trans-

formation  p(x)ŒEnd(U ⁄)  belongs to  T⁄⁄(M).  We have a continuous homomorphism
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p : M⁄⁄⁄⁄aaAT⁄⁄(M).

Proposition 3. T⁄⁄(M)  is a topological group if  M  is.

Proof. Suppose that  M  is a topological group. Then any representation

pV :  M aaAGL(V)
has a dual, or “contragredient”, representation

p ⁄V⁄ :  M aaAGL(V⁄⁄)

where  V⁄   is the dual vector space of  V  and
p ⁄V⁄⁄⁄⁄⁄(x)  =  tpV(x)-1.

We have a morphism of representations   e :  V⁄ ƒV aaAI  =  C defined by e(s ƒ x) =
·s, xÒ.  From the naturality of  uŒT⁄⁄(M),  we have the equality

e uV⁄ƒ ⁄V =  uI  e .
Using the equalities

uV⁄ƒ ⁄V = uV⁄ ƒ uV and          uI  = 1I ,
we see that

· uV⁄ (s), uV(x) Ò =  · s, x Ò.
This shows that   uV⁄   is the contragredient transformation of   uV ,

u V⁄  o tuV =  1V⁄   ,
and implies that  uV is invertible. qed

When  M = G  is a compact group, the algebra  End(U ⁄)  has a particularly simple

structure. Let  G⁄  be the set of isomorphism classes of irreducible representations of  G.  Let
us choose a representation  (⁄⁄V l , pl⁄⁄)  in each such class  l.  For any  uŒEnd(U ⁄),  let us write
ul for the  Vl  component of  u,  and put  

q(u) = ( ul  | lŒ G⁄ ).

Proposition 4. The map

q : End(U ) End(Vl)
l Œ G⁄
’

is an isomorphism of topological algebras.

Proof. Using naturality, we have the commutative diagram 

V V

V≈W V≈W

u

u

V

V≈W

W W
u

W
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for any  V, W Œ Rep⁄(G,⁄⁄C⁄⁄⁄⁄),  which shows that   uV≈W   = uV  ≈ uW . This implies that  u  is

entirely determined by  q(u)  since any representation of  G  decomposes as a direct sum of
irreducibles.

To prove that  q  is surjective, let  t = ( tl | lŒG⁄⁄⁄)  be a family of elements  tl Œ End(Vl).

We want to construct an element  u Œ End(⁄U)  so that  ul = tl  for every  l Œ G⁄ .  Let

SŒRep⁄(G,⁄⁄C⁄⁄⁄⁄).  There is a unique decomposition of  S  as a direct sum of isotypical
components

S = S l
l Œ G

⁄
Â .

Moreover, for each  lŒG⁄,  the canonical map
y l :  Vl ƒ HomG(Vl , Sl) aaASl

is an isomorphism of G-modules. We put

u S l
= y l ° (t l ƒ 1) ° y l

-1

and

u S = u S
ll Œ G

⁄
Â .

It is not difficult to verify that the family
u  =  ( u S |  S Œ Rep⁄(G,⁄⁄C⁄) )

defines a natural transformation  u : U aAU having the required property. The continuity
of  q-1 is a consequence of the fact that the topology on  End(U ⁄)  is the coarsest rendering
continuous all the projections  u jAul , lŒG⁄. qed

Remark. The proof of Proposition 4 is based on the fact that the category  Rep⁄(G,⁄⁄C⁄⁄⁄⁄) is the
closure under direct sums of its subcategory of irreducible representations.

Proposition 5. T⁄⁄(G)  is compact if  G  is a compact group.

Proof. Any representation V of a compact group admits a positive definite invariant
hermitian form  g : VƒVaAC .  We can view  g  as a C-linear pairing

h : _V ƒVaaAC ,             h(-x, y) = g(x, y).
For any  uŒEnd(U ⁄),  we have 

h ° u
Vƒ V

= u
I ° h.

But, if  u  is tensor preserving and self conjugate, we have

u
Vƒ V

= u
V

ƒ u
V

, u
I

= 1, u
V

( x) = u
V

(x).

This means that
h(u

V
(x), u

V
(y) ) = h(x , y) ;

that is,
g(uV(x), uV(y))  =  g(x, y),

which means that  uV belongs to the unitary group  U(V, g).  It follows from this that  T⁄⁄(G)
is a closed subgroup of a product of compact groups. qed
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To better understand the structure of  T⁄⁄(G)  we need to take account of the
*⁄⁄–involution

(  )* : End(U ⁄) aaA End(U ⁄).
Its definition can be given in terms of two other involutions:

u* = (u)⁄ = (u⁄)

where, by definition,  -u  is the conjugation operation considered earlier and

(u⁄)
V

= (u
V

⁄)
⁄ .

A better description, valid only for compact groups, is to say that it transports across the
isomorphism  q  of Proposition 4 to the  canonical C⁄*–algebra structure on each  End(Vl)  

for  lŒG⁄ :  the adjoint  h* of an element  hŒEnd(Vl)  is defined by the equation

g⁄⁄(⁄h*(x), y)  =  g⁄(⁄x, h(y))

and does not depend on the choice of  g  since  g  is unique up to a scalar multiple (by
Schur’s Lemma applied to the irreducible representation  Vl ).

Remark. The algebra  End(Vl)  does not depend on the choice of  V l in the class  l.  For, it
follows from Schur’s Lemma that the algebras  End(V1)  and  End(V2)  are canonically
isomorphic for any two isomorphic irreducible representations  V1 ⁄⁄, V2 .

An element  u Œ End(U ⁄)  is  unitary if   u*u = u u* = 1.  The group of unitary elements
is isomorphic to the product

U(d l
l Œ G

⁄
’ )

where  U(dl) Ã End(Vl)  is a unitary group of dimension  dl = dim V l .  We have proved

that  T⁄⁄(G)  is a closed subgroup of this product.
The theory of Fourier transforms on compact groups can now be described. The

Fourier transform of a continuous map  f : G aAC is an element  F⁄⁄f Œ End(U ⁄).  It is
defined by the integral

(Ff)
V

= f(x) p
V

(x) dx
G

Ú .

It is easy to see that
F⁄⁄(⁄f * g⁄)  =  (F⁄⁄f⁄) ( F⁄⁄g⁄) ,

where  f * g  is the convolution of  f  and  g  given by

(f * g)(x) = f (x y- 1

G
Ú ) g(y) dy .

Also, we have
F⁄⁄f⁄⁄* = (F⁄⁄f⁄)*

where  f⁄⁄* is defined by   f⁄⁄*(x)  = _f ( x⁄-1 ).
It follows from Proposition 4 that  F⁄⁄f  is entirely determined by its effect on

irreducible representations

(Ff)(l) = f(x) p l(x) dx
G

Ú ,

so that  F defines a map
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F : C (G, C) End(Vl
l Œ G ⁄
’ )

on the algebra C⁄⁄(G, C ) of complex-valued continuous functions on G. We would like to
describe an inverse to  F .  It should be noted that  F cannot be surjective because we have

F f (l) £ f •

where the norm on the C⁄*–algebra  End(Vl)  is used on the left hand side. This shows that

F lands in the set of elements of bounded norm

u = sup
l Œ G

⁄
u l < + • .

This set forms a genuine C⁄*–algebra
bde d

End(Vl )
lŒ G

⁄
’ Ã End (Vl)

l ŒG
⁄

’ .

We begin by describing a partial inverse  F -1 to  F :

F - 1 : Â
l Œ G

⁄
E nd(Vl) C (G , C )

(F - 1 g)(x) = Tr(g (l) p l (x)-1) d l
l Œ G

⁄
Â .

But, to prove anything about this inverse, we need the orthogonality relations.

Lemma 6. If  l, d Œ G⁄ and  AŒHom(Vd ⁄, Vl⁄⁄)  t h e n

p l
G

Ú (x)A p d(x)- 1 dx =
T r (A)

d
l

id if l = d
0 otherwise .

Ï
Ì
Ó

Proof. This is a classical lemma, but we give the proof for completeness.  The left hand side
is an operator obtained by averaging the function  xjApl(x) A pd(x)-1 over the group. It is

therefore an invariant map from V d to  V l⁄⁄ .  By Schur’s lemma, it must be equal to  0  if  l
π d and a scalar multiple of the identity if  l = d .  To check the equality, we just need to take
the trace on both sides. qed

Lemma 7. If  l, d Œ G⁄ and v ŒV l ,  wŒV d t h e n

p lG
Ú (x)(v) ƒ p d(x)- 1(w) dx =

wƒ v
d

l

if l = d

0 o the rwise .

ÏÔ
Ì
ÔÓ

Proof. It is enough to prove that, for any linear form  f : Vl
aAC ,  we have

p l
G

Ú (x)(v) f(p d(x)-1(w) ) dx =
wf (v)

d
l

if l = d

0 otherwise .

ÏÔ
Ì
ÔÓ

This equality is a special case of Lemma 6 with the operator  A  given by  A(y)  =  f (y) v . qed

Proposition 8 (Orthogonality Relations). If  l, d Œ G⁄ and AŒEnd(Vl⁄), B⁄ŒEnd(Vd ⁄)   t h e n

8



(i) Tr(A p l (x) ) Tr(B p d(x- 1) ) dx =
Tr (AB)

d
l

if l = d

0 otherwise .

ÏÔ
Ì
ÔÓG

Ú

(ii) Tr(A p l (x) ) Tr(B p d(x)) dx =
Tr(AB

*
)

d
l

if l = d

0 otherwise .

ÏÔ
Ì
ÔÓG

Ú
Proof. It suffices to verify  relation (i) when both  A  and  B  are of rank  1,  since the
identity is bilinear in  A, B  and the rank 1 operators span all the operators.  Put  A(x) =
f (x) v  and  B(x) = y(x) v.  The result follows from application of the linear form   f ƒ y :
V l ƒ V d 

aAC   to the equality in Lemma 7. The second relation follows from the first and

Tr(Bp d(x)) = Tr(B*p d(x)* ) = Tr(B*p d(x)- 1) .qed

Corollary 9. If  l, d Œ G⁄ and AŒEnd(Vl⁄)  then the following identity holds:

d l Tr (A pl( x )) p d (x- 1) d x =
G

Ú A for l = d
0 otherwise .

Ï
ÌÓ

Proof.  Since the pairing  ·A,BÒ = Tr⁄⁄(AB)  is exact, it suffices to check the equation after
applying  Tr⁄⁄(⁄B –⁄)  on both sides. But then the orthogonality relations give the result. qed

On  C⁄⁄(G, C⁄⁄)  we introduce the inner product

· f, g Ò = f (x)g(x)dx
G

Ú .

Note that we have
· f, g Ò = e(f* * g)

where  e :  C⁄⁄(G, C⁄⁄) aAC is the functional “evaluate at  e Œ G” :  e(f) = f(e).

On  S ⁄⁄l⁄ŒG⁄ ⁄End(Vl )  we introduce the inner product

· g, h Ò = Tr(g*

l Œ G
⁄

Â (l) h(l) )d l .

Proposition 10. The following equalities hold:

(a)    F F -1 g  =  g ,
(b)    F -1 (g h)  =  ( F -1 g ) * ( F -1 h) ,

(c)    F -1 ( g* )  =  ( F -1 g )* ,
(d)    · F -1 g , F -1 h Ò  =  · g , h Ò .

Proof. We have

(F (F -1g ) )(d) = d l
G

Ú
l Œ G

⁄
Â Tr(g (l)p l (x)-1) p d(x) dx .

But, by Corollary 9, we have

d l Tr (g(l) pl( x -1) ) p d ( x )d x =
G

Ú
g( l) for l = d

0 otherwise .
Ï
Ì
Ó

The equality  F F -1 g  =  g  follows. Similarly for (b). The equality (c) is trivial. To prove the
last, we note that
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e(F -1g) = Tr(g (l))d l
l Œ G

⁄
Â ,

and therefore

· F -1 g , F -1 h Ò   =     e (( F -1 g )* * ( F -1 h) )
=     e  F -1 ( g* h)
= Tr(g *

l Œ G⁄
Â (l ) h(l) ) d l

=     · g , h Ò . qed

The domain of  F -1 can be completed by using the norm

u
2

= u , u .

Its completion is a Hilbert space isomorphic to the Hilbert sum
h i l be rt

End (Vl )
l Œ G

⁄
Â

where  End(Vl )  is given the Hilbert space metric defined by

A
2

= d l Tr(A* A ).

The continuous extension of  F -1 defines an isometric embedding

F - 1 :
h i l be rt

End (Vl )
l Œ G

⁄
Â L2(G) .

Definition. Let  M  be a topological monoid. A function  f : M aAC is said to be
representative of  (V, pV)ŒRep⁄(M,C⁄⁄⁄⁄)  when there is a linear form 

f : End(V) aaAC 
such that  f = f o pV .

Equivalently,  f  is representative of  (V, pV) when there is some  A Œ End(V)  such
that  f(x) = Tr(A pV(x))  for every  x Œ M.  This means that  f  is a linear combination of the
coefficients  p ⁄i ⁄j⁄⁄(x)  of  pV in some basis of  V.  We denote by  R(V, pV),  or  R(V),  the set of
functions that are representative of  (V, pV).  Let  R(M)  be the set of functions on  M  which
are representative of some representation  (V, pV).

Proposition 11. R(M) is a subalgebra of  C⁄⁄(M,⁄⁄⁄C⁄⁄) which is closed under conjugation  fjA-f .

Proof. The result follows from the easy observations below.
R( V1 ≈ V 2 )   =  R(⁄V 1) + R(⁄V 2),      R(⁄V 1) R(⁄V 2)  Õ  R( V1 ƒ V 2 ) 

R(V) = R(V)
R( I )   =  { constant functions } qed

Theorem 12 (Peter-Weyl).  For any compact group G  and any  xŒG,  x π e,  there exists a
finite dimensional representation (V, pV)  such that  pV(x) π id.

Corollary 13. On a compact group any continuous function can be uniformly approximated
by representative functions.
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Proof. Let  x, y ŒG,  x π y.  Theorem 12 says that there exists a representation  pV such that
pV(x y⁄⁄-1) π id;  that is,  pV(x) π pV(y).  But there exists a linear form  f : End(V) aAC such
that 

f (pV(x))  π  f (pV(y)).
This shows that the subalgebra  R(G)  separates points; and since  R(G)  is closed under
conjugation, the result follows from the Stone-Weierstrass theorem. qed

Theorem 14 (Plancherel theorem for compact groups). The Fourier transform F can b e
extended continuously to an isometry

F : L2(G) ~ h i l be rt
E nd (Vl)

l Œ G
⁄

Â .

Proof. We have already defined an isometric embedding

F - 1 :
h i l be rt

End (Vl )
l Œ G

⁄
Â L2(G) .

The subspace  Im( F⁄⁄-1 )  is closed since it is complete. But it contains the dense subspace
R(G);  so  Im( F⁄⁄-1 )  =  L2(G), and the theorem is proved. qed

The group  G  acts on the left and right of  L2(G)  via the equalities:

(x • f ) (y)  =  f (x -1 y) , (f • x ) (y)  =  f (y x -1).

Also,  G  acts on both sides of each of the Hilbert spaces  End(Vl ):

x • A  =  pl(x) A,  A • x  =  A pl(x) .
The Fourier transform respects these actions:

F (x • f )  =  x • ( F f) , F (f • x )  =  ( F f) • x .
A function  f Œ⁄⁄C⁄⁄(G, C⁄⁄)  is a class function if it is constant on conjugacy classes of  G;

or equivalently, if it is invariant under conjugation:
f  =  x • f • x -1.

The class functions are exactly the members of the centre of the algebra  C⁄⁄(G, C⁄⁄)  with
respect to the convolution product.

Proposition 15. An element  uŒEnd(U ⁄)  is central if and only if, for every  V ŒRep⁄(G,⁄C⁄⁄⁄⁄),
the linear map uV :  V aAV  is a G-homomorph i sm.

Proof. If  u  is central then, for every  x Œ G,  we have  u p(x) = p(x) u,  and so
uV pV(x)  =  pV(x) uV

for every  V.  Conversely, if  uV is a G⁄-homomorphism then, for every  wŒEnd(U ⁄),  we
have the commutative square below showing that  uw = wu;  so  u  is central. qed

V V

V V

u

u

V

V

ww
V V

We would like to restrict the Fourier transform to its central part. If  f Œ⁄⁄C⁄⁄(G, C⁄⁄)  is a
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class function then  x • f   =  f • x ,  and therefore
p(x) ( F f ) =  ( F f ) p(x) ,

which shows that   F f  is central.
For any  lŒG⁄,  the map  (⁄⁄F f⁄⁄)(l)  : V l  

aAV l  is a G-homomorphism. According to
Schur’s lemma, it must be a scalar multiple of the identity. Denoting this scalar by  (Tf)(l) ,
we have

(Tf )(l) = 1
d l

Tr(Tf ) (l ) = 1
d l

f(x) c l(x) dx
G

Ú
where  c ⁄l(x) = Tr(p l(x))  is the character of the irreducible representation  V l .  From the

relation  (⁄⁄F f⁄⁄)(l) = (Tf)(l) id l ,  we deduce the relations
T(f *⁄⁄g⁄⁄)  =  (Tf⁄⁄) (Tg⁄⁄) ,

T(f*) = Tf .
The centre of each algebra  End(Vl)  is  C • id l. According to Propositions 4 and 15, the

centre of the algebra  End(U ⁄)  is equal to the product

C ∑

l Œ G
⁄

’ i d l @ C G⁄

.

We define the inverse Fourier transform of any function  g  :  G⁄ aAC of finite support by 

(T -1g ) (x) = g(l)
l Œ G⁄

Â c l (x) d l .

It is a consequence of Proposition 10 that:

(a)      T T-1 g  =  g ,
(b)      T-1 (g h)  =  ( T-1 g ) * (T-1 h) ,
(c)      T-1 ( g* )  =  (T-1 g )* ,
(d)     · T-1 g , T-1 h Ò  =  · g , h Ò .

In this last equality, the inner product on the right hand side is defined by

· g, h Ò = g(l) h(l) d l
2

l Œ G
⁄

Â .

The spectral measure dl on  G⁄ assigns weight  dl
2 to the singletons  { l }.  The Hilbert

space  L2(G⁄⁄)  is the space of square summable functions with respect to the spectral
measure. We write  C⁄(G)  for the space of conjugacy classes of  G.  It is the orbit space of  G
acting on itself by conjugation. There is a canonical measure on  C(G)  obtained by taking

the image of the Haar measure along the projection  G aAC(G).  Obviously,  L2 ⁄(C⁄(G))  is

isomorphic to the subspace of  L2(G)  consisting of square integrable class functions.

Theorem 16. The Fourier transforms T  and T-1 have continuous extensions to mutually
inverse isometries

L2 ⁄(C⁄(G)) SahaAL2(G⁄ ) .

Proof. This is just a description of the restriction of the Fourier transforms  F⁄⁄ and  F⁄⁄-1 to
the central parts. qed

A collection  X  of representations of  G  is closed when it contains
(i)  p ⁄1 if  p ⁄1 is isomorphic to some  p ⁄2 Œ X ,
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(ii)  p ⁄1 if  p ⁄1 is a subrepresentation of  p ⁄2 Œ X ,
(iii)  p ⁄1 ≈ p ⁄2 if  p ⁄1 , p ⁄2 Œ X ,
(iv)  p ⁄1 ƒ p ⁄2 if  p ⁄1 , p ⁄2 Œ X ,
(v)   -p ⁄1 if  p ⁄1Œ X ,

(vi)   I.
The set of representative functions of the members of  X is a subalgebra  R(X ⁄⁄)  of the
algebra  R(G).

Lemma 17. Let  X be a closed collection of representations of  G.  Suppose that, for every
xŒG,  x π e,  there exists a representation  p ⁄V ⁄ŒX such that p ⁄V(x) π e.  Then  X =  Rep⁄(G,⁄C⁄⁄⁄⁄).

Proof. If  X π Rep⁄(G,⁄C⁄⁄⁄⁄),  there will be an element  lŒ G⁄ such that  p ⁄⁄lœ X .  The
orthogonality relations then imply that the representative functions of  p ⁄⁄l are orthogonal

to the elements of  R(X ⁄⁄).  In particular,  c ⁄⁄l is orthogonal to  R(X ⁄⁄).  On the other hand, the

hypothesis implies that the subalgebra  R(X ⁄⁄)  separates the points of  G  and is closed under
conjugation. According to the Stone-Weierstrass theorem,  R(X ⁄⁄)  is dense in  C⁄⁄(G, C⁄⁄).  This
is a contradiction. qed

We would like to prove that, for any compact group  G,  the map
p :  G aaAT⁄⁄(G)

induces, via restriction, an isomorphism of algebras
p* : R(T⁄⁄(G)) aaAR(G).

We shall obtain this from the next result.

Lemma 18. The restriction functor

p* :  Rep⁄(T⁄⁄(G), C⁄⁄⁄⁄)  aaA Rep⁄(G, C⁄⁄⁄⁄)
is an equivalence of categories.

Proof. We define an extension functor
e  :  Rep⁄(G, C⁄⁄⁄⁄)  aaA Rep⁄(T⁄⁄(G), C⁄⁄⁄⁄)

as follows. For any  V ŒRep⁄(G, C⁄⁄⁄⁄),  the map  ujAuV is a representation of  T⁄⁄(G)  on  V.

The commutative triangle below shows that   p*(pV) = pV.  We put  e⁄(V, pV) = (V, pV).  For
any morphism  h : (V, pV) aA(W, pW)  in Rep⁄(G, C⁄⁄⁄⁄)  and any  uŒT⁄⁄(G), we have  h ⁄⁄o⁄⁄uV =

uW⁄⁄o h .  This shows that  h  is also a morphism  h : (V, pV) aA(W, pW)  in  Rep⁄(T⁄⁄(G), C⁄⁄⁄⁄).

G GL(V)

T (G)

p

p p

V

V

It is easy to see that  e  preserves direct sums, tensor products and conjugate
representations. Moreover, from the same commutative triangle (above), if  (V, pV)  is
irreducible then  e(V, pV)  is irreducible. From this it follows that the image of the functor
e  is a full subcategory whose objects constitute 

13



a closed collection  X of representations of  T⁄⁄(G).  We prove that  X separates the elements

of  T⁄⁄(G). Let  uŒT⁄⁄(G),  u π e.  There exists a representation  V  of  G  such that  uV π idV .
This means that  pV(u) π idV and thus  pV separates  u  from  e.  By Lemma 17, the

collection X is all of  Rep⁄(T⁄⁄(G),⁄C⁄⁄⁄⁄),  and so  e  is an equivalence of categories. Finally,  p* is

an equivalence since  p*o e  = id . qed

Lemma 19. The restriction map

p* : R(T⁄⁄(G)) aaAR(G)
is an isomorphism of algebras.

Proof. We define an inverse  e : R(G) aaAR(T⁄⁄(G)) in the following manner. Any  fŒR(G)
has a unique representation in the form

f (x) = Tr(g(l ) p l (x)) d l
l Œ G⁄

Â

where  g Œ S ⁄lŒG⁄ End(Vl⁄⁄).  ( In fact,  g  =  F f .)  We define

e(f )(u) = Tr(g (l) p l (u) ) d l
l Œ G⁄

Â .

According to Lemma 18, we have  G⁄ = T (G)⁄ from which the bijectivity of  e  follows.

Finally,  p* is bijective since  p*o e  = id . qed

Theorem 20 (Tannaka-Krein). For any compact group  G,  the canonical map

p :  G aaAT⁄⁄(G)
is an isomorphism.

Proof. We first prove the injectivity of  p .  According to Peter-Weyl (Theorem 12), for any
xŒG,  x π e ,  there is a representation  (V, pV)  such that  pV(x) π id.  But then  p (x) π e  since
pV(p(x)) = pV . To prove the surjectivity of  p ,  we first prove

( * ) f(u) du
T (G )

Ú = f(p(x) )
G

Ú dx

for any  f Œ C⁄⁄(T⁄⁄(G), C ).  It is enough to prove this equality when  f Œ R(T⁄⁄(G))  since  R(T⁄⁄(G))

is dense in  C⁄⁄(T⁄⁄(G), C⁄⁄)  by Corollary 13. Using Lemma 19, we see that a function  f Œ R(T⁄⁄(G))
has a unique representation

f (u) = Tr(g (l) p l (u)) d l
l Œ G ⁄

Â ,

so that
f (p (x) ) = Tr( g(l) p l (x) ) d l

l ŒG ⁄
Â .

But the orthogonality relations give

Tr (g(l) p l( u)) du =
G

Ú
g(I) for l = I

0 otherwise .
Ï
Ì
Ó

Similarly,

Tr (g (l ) pl( u)) du =
T (G)

Ú
g( I) for l = I

0 otherwise .
Ï
Ì
Ó
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Equality  (*)  follows.
To prove the surjectivity, let us suppose that  Im(p) π T⁄⁄(G).  Let  f  be a positive

function whose support is contained in the complement of the closed subset  Im(p).  Then
we have

f (u) du
T ( G )

Ú > 0 and f (p (x) )
G

Ú dx = 0

which is a contradiction. qed

§2. The bialgebra of representative functions.

This Section provides a more complete description of the algebra of representative
functions on a compact group and, more generally, on a topological monoid. We shall see
that  R(M)  is a bialgebra, and we shall compute it in some special cases. We begin by giving
a simple characterization of representative functions on locally compact monoids.

Let  M  be a locally compact monoid. For each  yŒM, consider the translation
operators  ly(x) = yx  and  ry(x) = xy.  We enrich  C⁄⁄(M, C⁄⁄⁄⁄)  with the topology of uniform
convergence on compact subsets of  M.  The maps

(y, f) jAf o⁄ry and  (f, y) jAf o⁄ly

define continuous left and right actions of  M  on  C⁄⁄(M, C⁄⁄⁄⁄).

Proposition 1. A continuous complex-valued function f  on a locally compact monoid  M
is representative if and only if the linear subspace of  C⁄⁄(M, C⁄⁄⁄⁄)  spanned by any one of t h e
three subsets

{ f o ly | yŒM }, { f o ry | yŒM }, { f o ly o rz| y, zŒM }
is finite dimensional.

Proof. Let ⁄⁄pV : M aAEnd(V) ⁄⁄be a representation of  M.  The set  R(V,⁄⁄pV)  of representative
functions for ⁄pV ⁄is closed under left and right translation; for, if ⁄⁄f(x) = Tr(A pV(x)), ⁄⁄we have

f o⁄ly o⁄rz(x) = Tr(A pV(y⁄x⁄z)) = Tr(pV(z) A pV(y) pV(x)).

Conversely, let us assume, for example, that  { f o⁄ry | yŒM }  generates a finite dimensional

vector subspace  V.  The continuous left action of  M  on  C⁄⁄(M, C⁄⁄⁄⁄)  restricts to a continuous
left action of  M  on  V.  We obtain in this way a continuous representation  pV : M
aAEnd(V)  of  M.  Let  e :  VaAC be the linear form  e(h) = h(e)  where  eŒM  is the unit.
We have

f(x)  =  e(f o rx)  =  e(pV(x)(f))  =  Tr(A pV(x))
where  AŒEnd(V)  is the rank one linear function  h jA e(h) f . qed

For any topological monoid  M,  there is a bialgebra structure on  R(M)  which we
now describe. Let

D :  C⁄⁄(M, C⁄⁄⁄⁄) aA C⁄⁄(MA⁄⁄¥ M, C⁄⁄⁄⁄)
be the algebra homomorphism defined by

(Df)(x, y)  =  f(xy).
We have canonical inclusions

R(M) ƒ R(M) Ã  C⁄⁄(M, C⁄⁄⁄⁄) ƒ C⁄⁄(M, C⁄⁄⁄⁄) Ã C⁄⁄(M⁄⁄¥ M, C⁄⁄⁄⁄).

Lemma 2. For all fŒR(M), Df  Œ  R(M) ƒ R(M).

Proof. It is enough to prove the result when  f(x) = p ⁄i j⁄(x)  where  p = (p ⁄⁄i j )  is some
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representation of  M.  In this case we have
p i j (xy)  =  Sk p i k (x) p k j (y) ;

that is,
Dp i j =  Sk p i k ƒ p k j  . qed

Hence  D gives a comultiplication for  R(M).  The counit  e : R(M) aAC of the
coalgebra is given by  e(f) = f(e).

When the monoid  M  is a topological group, the bialgebra  R(M)  becomes a Hopf
algebra. The antipode  n : R(M) aAR(M)  is defined by

n(⁄f⁄)(x)  =  f(x⁄-1) .
To see that  n(f⁄)ŒR(M),  suppose that  f(x) = Tr(p (x)A).  Then we have

f(x-1)  =  Tr(p (x-1)A)  = Tr(tA tp (x-1))  =  Tr(p⁄ (x) tA)

where  p⁄ (x)  =  tp (x-1)  is the contragredient representation of  p .
The algebra  R(G)  is easy to describe when  G  is a compact abelian group. In this case,

R(G)  is the linear subspace of  C⁄⁄(G, C⁄⁄⁄⁄)  spanned by the set  G⁄ of characters of  G.  However,
the orthogonality relations imply that  G⁄ is a linearly independent subset of  C⁄⁄(G, C⁄⁄⁄⁄).

This shows that  R(G)  is isomorphic to the enveloping algebra  C⁄⁄⁄⁄[G⁄⁄]  (usually called the

group algebra) of the dual group  G⁄.  For any  cŒ G⁄,  the relation
c(xy)  =  c(x) c(y)

implies the relation
D c =  c ƒ c .

This shows that the coalgebra structure  D :  C⁄⁄⁄⁄[G⁄⁄] aAC⁄⁄⁄⁄[G⁄⁄] ƒ C⁄⁄⁄⁄[G⁄⁄]  is simply the linear

extension of the diagonal map   D : G⁄⁄ aAG⁄⁄ ¥ G⁄⁄.  The antipode  n is the linear

extension of the inverse operation  G⁄⁄ aAG⁄⁄ .  It is also worthwhile to identify the
operation corresponding to conjugation  f jA_f   in  R(G):  it is the antilinear extension of
the inverse operation.

If  G  is the circle group  T then  R(G)  is the ring of finite Fourier series:

R(T)  =  C [ Z ]  =  C [ z, z-1 ]
where  z = eiq and  -z = z-1.

When  G  is not abelian, the following result is useful in identifying  R(G).  For any
representation  pV of  G,  let  det(pV)  be the one-dimensional representation obtained as
the composite of  pV :  G aAGL(V)  and  det :  GL(V) aAGL(1).

Proposition 3. Let  G  be a compact group, and let  pV be a faithful representation of  G.  T h e
algebra R(G)  is generated by the coefficients of  pV together with det(pV)-1.

Proof. Let  A  be the subalgebra of  R(G)  generated by the coefficients of  pV and  det(pV)-1.
Let us verify first that  A  is closed under conjugation. But we have

det (p V )- 1 = det (p V ) ,

and also
R(p V) = R(p V ) = R(p

V⁄) .

It is therefore sufficient to verify that the entries of the contragredient representation are
contained in  A.  This is true because of the familiar formula expressing the entries of an
inverse matrix as cofactors divided by the determinant.

To finish the proof, let  X be the collection of representations whose coefficients
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belong to  A.  Then  X is a closed collection, and, since  pV is faithful, we can apply Lemma
16. This gives  X =  Rep⁄(G, C )  so that  A  =  R(G). qed

We would like to apply Proposition 3 to compact Lie groups, but to do this we need
the following result.

Proposition 4. Each compact Lie group G admits a faithful representation.

Proof. We shall use the fact that the poset of closed submanifolds of a given compact
manifold is artinian. This means that any non-empty collection of submanifolds contains a
minimal element; or equivalently, that any decreasing sequence of submanifolds must 

stop. For any  V ŒRep⁄(G, C⁄⁄⁄⁄),  the kernel of  pV is a closed submanifold of  G.  Let  ker(pW)  be
a minimal element in this collection. According to the Peter-Weyl Theorem, for any  x π e,
there exists  VŒRep⁄(G, C⁄⁄⁄⁄)  such that  x œ ker(pV).  But we have

ker(pV ≈ pW)  =  ker(pW) « ker(pV) ,
so that  ker(pW) �C ker(pV),  and so  xœker(pW).  This proves that  ker(pW) = {e}. qed

The last two Propositions have the following immediate consequence.

Corollary 5. The algebra of representative functions on a compact Lie group is finitely
generated.

We shall now give a complete description of  R(G)  for the compact Lie group  G  =
U(n)  of unitary  n ¥ n  complex matrices. Let  C [(zi j)]  be the ring of polynomials in the  n2

indeterminates  zi j ( 1 £ i, j £ n )  and let  d = det(zi j).  If we map  zi j into the coefficient  ri j
of the standard representation

r :  U(n) gaaAEnd(C⁄⁄⁄⁄n⁄¥ ⁄n) ,
we obtain a homomorphism

i :  C [(zi j), d-1] aaaAR(U(n))
sending   d-1 to  det(r)-1.

Proposition 6. The homomorphism i   is an algebra isomorphism, so that 
R(U(n))  @ C [(zi j⁄), d-1⁄].

Proof. Proposition 3 implies that  i is surjective. To show that  i is injective, let us first
remark that, for any  P(z)ŒC⁄⁄[(zi j⁄), d-1⁄],  the function  i(P(z))  on  U(n)  is exactly the function
u jAP(u).  Therefore, if  i(P(z)) = 0  then  P(u) = 0  for every  uŒU(n).  We have to show
that this implies that  P = 0.  This property is sometimes formulated by saying that  U(n)  is
Zariski dense in  GL(n,⁄⁄C⁄⁄⁄⁄) (⁄⁄it is the famous “unitarian trick” of Hermann Weyl which he
used to reduce the theory of rational representations of  GL(n,⁄⁄C⁄⁄⁄⁄)  to the easier case of
continuous representations of  U(n)⁄⁄).  Although this is very classical, we give a brief proof.

The Cauchy transformation Z = C(A)  of a matrix  AŒEnd(C⁄⁄n)  is defined by the formula
Z  =  (I + A) (I – A)-1 .

Its inverse is given by
A =  (Z – I) (Z + I)-1 .

The Cauchy transformation is a birational correspondence which is well defined between a
neighbourhood of  A = 0  and a neighbourhood of  Z = I  in  C⁄⁄⁄⁄n⁄¥ ⁄n.  When  A  is anti-
Hermitian,  Z  is unitary, and conversely.  As well as the Cauchy transformation, we shall

17



use the invertible linear transformation  A = L(B)  defined by
A    =    ( B – t⁄⁄⁄⁄B ) + i ( B + t⁄⁄⁄⁄B ) ,

B = A - tA
2 + A + tA

2 i .
When  B  is real,  A  is anti-Hermitian, and conversely. By hypothesis, the function

Q⁄(⁄B)   =   P⁄(C⁄(⁄L⁄(⁄B)))
is a rational function of  B  which vanishes identically when  B  is real in some
neighbourhood of  0.  This clearly implies that  Q = 0  identically; and therefore  P = 0
identically since

P⁄(⁄Z)   =   Q⁄(L-1⁄(⁄C⁄-1⁄(⁄Z))) . qed

The Hopf algebra structure on ⁄⁄C⁄⁄[(zi j⁄), d-1⁄] ⁄⁄which corresponds to the one on  R(U(n))
is easy to identify. The comultiplication is given by

D zi j =  Sk zi k Aƒ zk j
and the counit by

e zi j =  d i j   (the Kronecker delta) .
The antipode is given by

n z  =  z-1

where  z  =  ( zi j )  and  n z  =  ( n zi j ) .  With this notation, we have
D z =   z Aƒ z

where  D z  =  ( D zi j )  and z Aƒ z   =  ( Sk zi k Aƒ zk j ) .
We should also identify the conjugation operation  (_ ⁄⁄)  on  C⁄⁄[(zi j⁄), d-1⁄]  which

corresponds to the conjugation  f jA_f   on  R(U(n)).  It is easy to see that   (_ )  is the unique
antilinear ring homomorphism such that

-z  =  t⁄⁄⁄⁄z⁄-1

where  -z  =  ( -zi j ) .
For any commutative C-algebra  A ⁄⁄,  we define its spectrum Spec(A)  as the set of all

algebra homomorphisms  c : A aAC .  We give  Spec(A)  the topology of pointwise
convergence. When  A  is finitely generated, say  A  =  C [a1 , . . . , an] ,  the mapping   c jA

( c(a1) , . . . , c(an) )  is a homeomorphism between  Spec(A)  and a closed algebraic subset of
C⁄n .  When  A  is enriched with an antilinear involution  ajA-a ,  we can define a
conjugation operation on  Spec(A)  by putting, for all  a⁄ŒA,

c(a) = c(a) .
The real spectrum SpecR(A)  of  A  is the set of  cŒSpec(A)  such that   - -c = c .

The spectrum of a finitely generated commutative Hopf algebra is a complex
algebraic group. If the Hopf algebra is enriched with an antilinear involution (respecting
the Hopf algebra structure) then its real spectrum is a real algebraic group. In the example
above we see that the spectrum of  R(U(n))  is the algebraic group  GL(n,⁄⁄C⁄⁄)  and its real
spectrum is  U(n).  This is a special case of a more general result. For any compact group  G,
consider the canonical map

G  aaaA SpecR(R(G))
sending  x Œ G  into the homomorphism  c ⁄x given by  c ⁄x ⁄⁄(⁄⁄f )  =  f⁄⁄(x) .

Theorem 7. For any compact group G , there is a canonical homeomorphism

G  ahaA SpecR(R(G)) .

The proof of the above Theorem 7 will be delayed until the next Section. It follows
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from Tannaka reconstruction. We note immediately this striking consequence:

Corollary 8. Every compact Lie group is (real) algebraic.

Proof. If  G  is a compact Lie group then, according to Corollary 5, the Hopf algebra  R(G)  is
finitely generated. So  Spec(R(G))  is therefore a complex algebraic group whose real part is
equal to  G. qed

To end this Section, we prove the following result needed in Section 8. Let  M  and
M'  be topological monoids. We have an obvious canonical map

i  :  R(M) ƒ R(M') aaAR(M ¥ M').

Proposition 9. The canonical map  i  (above) is an isomorphism.

Proof. Clearly  i  is injective. We prove it surjective. It suffices to prove that the matrix
entries  pr ⁄s of any representation pV of  M ¥ M'  belongs to the image of  i.  We have

pr ⁄s⁄⁄(x,⁄⁄y)  =  S ⁄t pr ⁄t⁄⁄(x,⁄⁄e)⁄⁄pt⁄s⁄⁄(e,⁄⁄y).
This shows that

pr ⁄s⁄⁄ =  i (S ⁄t p1r ⁄t⁄⁄ƒ ⁄⁄p2t⁄s⁄⁄)
where  p1V ⁄⁄(x) = pV ⁄⁄(x,⁄⁄e)  and  p2V ⁄⁄(y) = pV ⁄⁄(e,⁄⁄y). qed

§3. The Fourier cotransform.

In this Section we shall describe a transformation which has the Fourier transform
as its dual. It is more fundamental than the Fourier transform in the sense that it behaves
better algebraically. Starting with a category C and a functor  X : C aAVectC with values

in finite dimensional vector spaces, we shall construct a certain vector space  End⁄ ⁄(X)
whose dual is the algebra  End(X) = Hom(X,⁄⁄X)  of natural transformations from X  to  X.
When  C = Rep⁄(M,⁄⁄C⁄⁄)  and  X = U is the forgetful functor, the Fourier cotransform defines
an isomorphism

F⁄⁄⁄ :  End⁄ ⁄⁄(U)  ahaAR(M)

whose transpose is the (generalised) Fourier transform. In Section 4 we shall show that
End⁄ ⁄(U)  supports a natural coalgebra structure and that  F⁄⁄⁄ is a coalgebra isomorphism. 
Let  C be a small category. For any pair of functors  X, Y : C aAVectC ⁄⁄⁄, ⁄let  Hom(X, Y)  be the
set of natural transformations between  X  and  Y .  Now  Hom(X, Y)  is a vector space
which can be described as follows. For any arrow  f :  A aAB  in  C ,  let

p
f

, q
f

: Hom(X (C), Y (C))
C Œ C
’ Hom(X (A),Y(B))

be the maps out of the product whose values at  u  =  ( uC | C⁄ŒC )  are given by

pf (u)  =  Y(f⁄) uA , q⁄f (u)  =  uB X(f⁄)  .

Then clearly,  Hom(X, Y)  is the common equalizer of the pairs  (pf , q⁄f ) :

u Œ Hom(X, Y)  ¤ for all  f Œ⁄⁄C ,   pf (u)  =  qf (u) .

This construction can be dualised when  X(C)  and  Y(C)  are finite dimensional for every  C
Œ⁄⁄C (actually we just need  Y(C)  to be finite dimensional for every  C Œ⁄⁄C ,   but here we
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shall not consider this more general situation). More precisely, we want to construct a

vector space  Hom⁄ ⁄⁄(X,⁄⁄Y)  whose dual will be  Hom(X,⁄⁄Y)  (it is therefore suggestive to think

of  Hom⁄ ⁄⁄(X,⁄⁄Y)  as a predual of  Hom⁄(X,⁄⁄Y) ). By definition,  Hom⁄ ⁄⁄(X,⁄⁄Y)  is the common
coequalizer of the maps

tpf , tqf : Hom(X(A), Y(B) )* Hom(X(C) , Y(C)
C Œ C
Â ) *

into the direct sum. But, for any pair of finite dimensional vector spaces  V, W,  we have
canonical isomorphisms

Hom(V, W)⁄* @ (V* ⁄⁄ƒ ⁄W )* @ W * ⁄⁄ƒ ⁄V   @ Hom(W, V) .
The pairing between  Hom(V, W)  and  Hom(W, V)  is explicitly given by

·⁄S, T⁄Ò =  Tr⁄(S⁄T)  =  Tr⁄(T⁄S) .

Taking this duality into consideration, we see that  Hom⁄ ⁄⁄(X, Y)  can be defined as the
common coequalizer of the maps

i f , jf : Hom(Y(B) , X(A) ) Hom(Y(C) , X(C)
C Œ C
Â )

where, for any  SŒHom(Y(B), X(A)),
if⁄⁄⁄(⁄S ⁄)  =  ( S⁄⁄o⁄⁄Y(⁄f⁄) , A⁄) ,             jf⁄⁄⁄(⁄S ⁄)  =  ( X(⁄f⁄)⁄⁄o⁄⁄S , B⁄) .

In this description, the second component of a pair  (⁄⁄S ⁄⁄o⁄⁄Y(⁄f⁄)⁄,⁄⁄A ⁄)  indicates to which

component of the direct sum this element belongs. A handier description of  Hom⁄ ⁄⁄(X, Y)
is the following. For any  C⁄⁄Œ⁄⁄C and any  S Œ Hom(Y(C), X(C)),  let us write  [⁄S ⁄]  for the
image of  S  under the canonical map

Hom(Y(C), X(C)) aaA Hom⁄ ⁄⁄(X, Y) .

We have that  Hom⁄ ⁄⁄(X, Y)  is generated as a vector space by the symbols  [⁄S ⁄]  subject to the
relations

(i) [⁄aS + bT ⁄]  =  a[⁄S ⁄] + b[⁄T ⁄]   for  S, T ŒHom(Y(C), X(C)) ,
(ii) [⁄S ⁄⁄o⁄⁄Y(f)⁄]  =  [⁄X(f)⁄⁄o⁄⁄S ⁄]   for  f : A �aAB  and  S ŒHom(Y(B), X(A)) .

It is clear by construction that  Hom(X, Y)  is the linear dual of  Hom⁄ ⁄⁄(X, Y).  The
explicit pairing is 

Hom (X, Y) ƒ Hom⁄ ⁄⁄(X, Y)  aAC , ·⁄u, [⁄S ⁄]⁄Ò =  Tr⁄(⁄uC⁄⁄⁄o⁄⁄S ⁄⁄⁄)

where  S ŒHom(Y(C), X(C)).
Before continuing the general study of  Hom⁄ ⁄⁄(X, Y),  let us compute  Hom⁄ ⁄⁄(X, X) =

End⁄(X)  in the special case where  C =  Rep⁄(M, C⁄⁄)  and  X = U is the forgetful functor.  W e
define the Fourier cotransform 

F⁄⁄⁄ :  End⁄ ⁄(U)  aaAR(M),
as follows:

F⁄⁄⁄ ⁄⁄(z) (x)  =  ·⁄p (x) , z⁄Ò .
More explicitly, if  z  =  [⁄A ⁄]  where  A Œ End(V)  and  pV : M aAEnd(V)  then

F⁄⁄⁄ (⁄[⁄A ⁄]⁄) (x)  =  ·⁄p (x) , [⁄A ⁄]⁄Ò =  Tr⁄(⁄pV(x) A⁄) .

Theorem 1. For any topological monoid M, the Fourier cotransform is an isomorphism
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F⁄⁄⁄ :  End⁄ ⁄(U)  ahAR(M) .

To prove Theorem 1, we shall need two Lemmas.

Lemma 2. If  V 1 , V2 Œ Rep⁄(M, C⁄⁄),  and if A Œ End(⁄V 1 ≈ V 2 )  is written as

A =
A 11 A 12

A 21 A 2 2

Ê
ÁË

ˆ
˜̄

,
t h e n

⁄[⁄A ⁄]  =  ⁄[⁄A11⁄]  +  ⁄[⁄A2 ⁄⁄2 ⁄⁄] .

Proof. Let  j i :  V i
aA V 1 ≈ V 2 and  pi :  V 1 ≈ V 2 

aA V i ( i = 1, 2 )  be the canonical
inclusions and projections. We have

⁄[⁄A ⁄]  =  ⁄[⁄A ( j1 p1 + j2 p2 )⁄]  
=  ⁄[⁄A j1 p1 ⁄]  +  ⁄[⁄A j2 p2 ⁄⁄]
=  ⁄[⁄p1 A j1 ⁄⁄]  +  ⁄[⁄p2 ⁄⁄A j2 ⁄⁄] 
=  ⁄[⁄A11⁄]  +  ⁄[⁄A2 ⁄⁄2 ⁄⁄] . qed

Lemma 3. Any  z Œ End⁄ ⁄(U)  can be represented as  z  =  [ f ⁄⁄ƒ ⁄⁄v ⁄⁄]  for some v Œ V  and  f Œ

V * w h e r e pV : M aAEnd(V).  Moreover,  this can be done in such a way that  v generates
V as an M-module .

Proof. Each element  z Œ End⁄ ⁄⁄(U)  can be represented as  z  =  [⁄A ⁄⁄]  for some  A Œ End(W)
and  W Œ Rep⁄(M, C⁄⁄) . But we can express  A  as a sum of matrices of rank one:

A = fi ƒ
i Œ I
Â vi ;

so that, 
z = [fi ƒ

i Œ I
Â vi ] .

Let  V  be the representation obtained as the direct sum of  I  copies of  W,  and let 

v = ( v i i Œ I ) , f = f i p i
i Œ I
Â

where  pi :  V aAW  is the i-th projection. Using Lemma 2, we see that   z  =  [ f ⁄⁄ƒ ⁄⁄v ⁄⁄] .
To prove the second sentence, let  V ¢ be the submodule of  V  generated by  v.  The

inclusion  j : V¢ aAV  is an arrow in the category  Rep⁄(M, C⁄⁄).  Let  B  be the composite

V f C v V¢ .
Then we have

[ f ⁄⁄ƒ ⁄⁄v ⁄⁄]  =  [ j B ]  =  [ B j ]  =  [ (f |V¢ )⁄⁄ƒ ⁄⁄v ⁄⁄] . qed

Proof of Theorem 1. The surjectivity of  F⁄⁄⁄ is immediate from the definition of

representative function. Suppose that  F⁄⁄⁄ ⁄(z) = 0.  According to Lemma 3, we can suppose
that  z  =  [ f ⁄⁄ƒ ⁄⁄v ⁄⁄]  and that  v  generates the M-module  V.  Then we have

f ( pV (x) (v) )   =   F⁄⁄⁄ ⁄(z) (x)   =   0
for every  x Œ M.  This shows that the submodule generated by  v  is contained in  ker(f ).
Therefore  f = 0  and  z = 0. qed
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At this point it might be worthwhile to explain why we call  F⁄⁄⁄ the “Fourier
cotransform”. Suppose  G  is a compact group. The continuous dual of the Banach space
C⁄⁄(G, C⁄⁄)  is the space  M ⁄⁄(G, C⁄⁄)  of bounded measures on  G.  The Fourier transform of  m Œ
M ⁄⁄(G, C⁄⁄)  is the element  F⁄⁄m Œ End⁄(U)  given by

( F m) V = p V
G
Ú (x) d m(x) .

The Fourier transform of a function  f Œ⁄C⁄⁄(G, C⁄⁄)  is simply the Fourier transform of  f dx
where  dx  denotes the Haar measure on  G.

Proposition 4. If z Œ End⁄ ⁄⁄(U)  and  m Œ M ⁄⁄(G, C⁄⁄)  t h e n

· F⁄⁄m , z⁄⁄Ò  =  · ⁄m , F⁄⁄⁄ z⁄⁄Ò.

Proof. If  z  =  [ A ]  where  A Œ End(V)  and  pV : G aAEnd(V)  then we have
· F⁄⁄m , [ A ]⁄⁄Ò  =  Tr ( ( ⁄F⁄⁄m)V A )

= Tr ( p V
G
Ú (x) A d m(x) )

= Tr (p V
G
Ú (x) A ) dm(x)

= F⁄

G
Ú ( [A] ) (x) d m(x)

= · m, F⁄([A ]) Ò .q e d

The above Proposition 4 shows that the Fourier transform
F :  M ⁄⁄(G, C⁄⁄) aaaAEnd⁄⁄(U)

is the continuous dual of the linear map

F⁄⁄⁄ :  End⁄ ⁄(U) aaaAR(G) Ã C⁄⁄(G, C⁄⁄).

At this point, it becomes possible to extend the domain of the Fourier transform. W e
have a canonical inclusion

M ⁄⁄(G, C⁄⁄)  Ã  R(G)⁄*

since  R(G)  is dense in the Banach space  C⁄⁄(G, C⁄⁄)  (Section 1 Corollary 13).  We shall extend
F to the full linear dual of  R(G):

F :  R(G)⁄* aaaAEnd(U).
Let us write  ·⁄⁄h ⁄, f⁄⁄Ò for the evaluation pairing between  R(G)⁄* and  R(G).  The Fourier
transform of  h⁄⁄Œ R(G)⁄* can be defined by the formula

(F⁄h)V =  · h , p ⁄V ⁄⁄Ò
by which we mean that, if  (p ⁄i j⁄⁄)  is the matrix of  p ⁄V for some basis of  V  then  (·⁄h ⁄, p ⁄i ⁄⁄j⁄⁄Ò)  is
the matrix of  (⁄F⁄h)V for the same basis.

One might think of the elements of  R(G)⁄* as generalised distributions on  G.  More
precisely, when  G  is a compact Lie group, it can be proved that  R(G)  is a dense subspace of
the space  C⁄⁄•(G, C⁄⁄)  of smooth functions with the smooth topology [Sc]. The continuous

dual of  C⁄⁄•(G, C⁄⁄)  is the space  D⁄(G, C⁄⁄)  of distributions on  G.  We thus have a canonical
inclusion
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D⁄(G, C⁄⁄)  Ã  R(G)⁄*,
showing that the Fourier transform is defined on distributions. Recall that there is an
algebra structure on  D⁄(G, C⁄⁄)  given by the convolution product of distributions. There is
also an algebra structure on  R(G)⁄* (and more generally on each  R(M)⁄* )  which is the dual
of the coalgebra structure on  R(G).  It is easy to verify that this product on  R(G)⁄* extends
the convolution product of distributions. In particular, the universal enveloping algebra
U(⁄⁄g )  of the Lie algebra  g of the group  G  is a subalgebra of  R(G)⁄*,  since it is equal to the
subalgebra of  D⁄(G, C⁄⁄)  consisting of distributions whose supports are concentrated at the
unit element  e⁄ŒG.  The Lie algebra   g Ã U(⁄⁄g ) Ã R(G)⁄* corresponds to the e-derivations

D  :  R(G) aaAC ;
that is, the linear maps such that

D(f g⁄)  =  D(f⁄⁄) e(⁄g⁄⁄)  +  e(⁄f⁄⁄) D(⁄g⁄⁄)
where   e : R(G) aAC is evaluation at  e⁄ŒG.

In defining the generalised Fourier transform there was no need to restrict to
compact Lie groups. Quite generally, we have:

Proposition 5. For any topological m o n o i d M, the (generalised) Fourier transform is a n
isomorphism of topological algebras

F :  R(M)⁄* ahaAEnd⁄⁄(U).

Proof. As in the proof of Proposition 4, it can be shown that, for any  zŒEnd⁄ ⁄(U)  and
hŒ R(M)⁄*,  we have 

· F⁄⁄h ⁄, z⁄⁄Ò  =  · ⁄h ⁄, F⁄⁄⁄ ⁄z⁄⁄Ò.

This proves that  F is an isomorphism since it is the transpose of  F⁄⁄ and we have
Theorem 1. Also this shows that  F⁄ is bicontinuous since the topology on both sides is the
usual topology for linear duals (namely, pointwise convergence for linear functionals). To
finish the proof, we must verify that  F⁄ is an algebra homomorphism. By definition of the
convolution product, we have, for all  h, kŒR(M)⁄* and  fŒR(M),

· h * k, f Ò = · h, fr Ò · k, gr Ò
r = 1

n

Â
where

Df = f r ƒ
r = 1

n

Â g r .

If we apply this formula to the entries  p ⁄i ⁄⁄j of the matrix of a representation  pV of  M
(relative to some basis of  V), we obtain

· h * k, p i j Ò = · h, p i r Ò · k, p r j Ò
r = 1

n

Â ,

which means exactly that
F (⁄h * k)V =  ( F h)V ( F k)V . qed

When  G  is a compact group, we can combine the last Proposition 5 with Section 1
Proposition 4 to obtain:

Corollary 6. For any compact group G, the Fourier transform defines an isomorphism o f

23



topological algebras
F : R(G)* ~ End(Vl )

l Œ G⁄
’ .

We now return to the more general situation of a topological monoid  M.  Recall
that we have a canonical map

j  :  M aaAR(M)⁄*

defined by   · j(x)⁄,⁄⁄f Ò =  f⁄(x).  We might say that  j(x)  is the Dirac measure concentrated at
xŒM.  We have a commutative triangle  

M R(M)
*

p

j

End(U⁄⁄)

F

since, for every  VŒRep⁄(M,⁄C⁄⁄),
F(j(x)) V = · j(x) , p V Ò = p V (x) = p (x) V .

Let  Endƒ(U ⁄)  denote the submonoid of  End(U ⁄)  consisting of the tensor-preserving
natural transformations (the product is composition). The Tannaka monoid  T⁄⁄(M)  of  M

is the submonoid of  Endƒ(U ⁄)  consisting of the self-conjugate natural transformations.

Proposition 7. The Fourier transform F  induces the following isomorphisms o f
topological monoids:

Spec(R(M)) ahA Endƒ(U ⁄),              SpecR(R(M)) ahA T⁄⁄(M).
Moreover, the following triangle commutes.

M Spec (R(M))

p

j

T (M)

R

H

Proof. For any representations  V, W ŒRep⁄(M,⁄C⁄⁄),  let  (p ⁄i ⁄⁄j⁄⁄)  and  (r ⁄r ⁄⁄s⁄⁄)  be the matrices of
p ⁄V ⁄ and  p ⁄W in some basis of  V  and  W,  respectively. If we express the equality

(F⁄⁄k)Vƒ⁄W =  (F⁄⁄k)V ƒ (F⁄⁄k)W

in matrix form, we obtain the equality
· k , p i j r r s Ò = · k, p i j Ò · k, r r s Ò

for all  i, j, r, s. This proves that  k  is an algebra homomorphism if and only if
F kŒEndƒ(U ⁄) (we are using here the fact that  R(M)  is the linear span of the matrix entries
of the representations of  M ). This establishes the first bijection. The second bijection is a
consequence of the formula  

F k = F k

where the conjugate  _k  of an element  kŒR(M)⁄* is defined by

·k , f Ò = · k, f Ò .
Bicontinuity of the bijections follows from that of the Fourier transform. qed
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Corollary 8. For any compact group G, there is a commutative triangle of compact group
isomorphisms:

G Spec (R(G))

p
j

T (G)

R
˙

h

Ó F

Proof. According to Tannaka-Krein (Theorem 20),  p is an isomorphism. Hence,  j = F⁄⁄-1⁄o⁄⁄p
is also an isomorphism. qed

§4. The coalgebra  End⁄⁄⁄⁄ ⁄⁄⁄⁄(⁄⁄⁄⁄X⁄⁄⁄⁄).

In this Section, we shall introduce a coalgebra structure on  End⁄ ⁄(⁄X⁄)  for any functor
X  :  C aAVectC whose values are finite dimensional vector spaces. More generally, under
the same hypotheses on functors  Y, Z,  we shall describe a map

D :  Hom⁄ ⁄⁄(X, Z)  aaaAHom⁄ ⁄(Y, Z) ƒ Hom⁄ ⁄(X, Y)
which dualises the usual composition map. We shall also show that there is a coaction

g :  X aaaAY⁄⁄ƒ ⁄⁄Hom⁄ ⁄(X, Y) 
dualising the usual evaluation action

Hom⁄(X, Y) ƒ X aaAY.

We begin by giving another description of  Hom⁄ ⁄⁄(X, Y)  useful for many purposes. It
is based on the concept of tensor product [⁄F ⁄] of a contravariant functor  S : C ⁄op aAVectC

with a covariant functor  T : C ⁄ aAVectC .  The behaviour of this tensor product is similar
to that of the tensor product of right and left modules. To stress this analogy, we write o n
the right the action of  f : A aAB  on an element  xŒS(B):

S ⁄(⁄f⁄⁄)⁄(x)  =  x • f
and similarly, we shall write on the left the action of  f  on  yŒT(A):

T ⁄(⁄f⁄⁄)⁄(y)  =  f • y .
The required tensor product is based on the notion of bilinear pairing

q  :  S ¥ T aaAV
where  V  is a vector space. This  q  is a family  ( qC | CŒC )  of bilinear pairings

qC :  S(C) ¥ T(C)  aaAV
which respect the actions of  S  and  T.  More precisely, it is required that we have

qA( x • f , y )  =  qB ⁄( x , f • y )
for all  f : A aAB  in  C,  xŒS(B),  yŒT(A).  The universal recipient of such a pairing is a
vector space called the tensor product over  C of  S  with  T,  and is denoted by  S ƒC T .  W e

now formulate one of its fundamental properties. Note that a family  ( qC | C⁄ŒC )  of
bilinear pairings

qC :  S(C) ¥ T(C)  aaAV
corresponds to a family  ( q'C | CŒC )  of linear maps

q'C :  T(C)  aaAHom(⁄S(C),⁄⁄V ⁄) .
Let us denote by  Hom(⁄S,⁄⁄V ⁄)  the covariant functor whose value at  CŒC is the vector space
Hom(⁄S(C),⁄⁄V ⁄).

Proposition 1. The correspondence described above determines a bijection between linear
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m a p s S ƒC T aAV  and natural transformations  T aAHom(⁄S,⁄⁄V ⁄).

Suppose now that the functors  X, Y : C ⁄ aAVectC take their values in finite
dimensional vector spaces. For any object  C Œ C,  the map

[  ,  ]   :  Y(C)⁄* ƒ X(C) aaaA Hom⁄ ⁄⁄(X, Y) ,                  [ f , x ]  =  [ f ⁄ƒ ⁄x ] 
is a bilinear pairing between the contravariant functor  Y⁄* and the covariant functor  X
since we have, for all  f : A aAB in  C,  xŒX(A),  f ŒY(B)*,

[ f Y(f⁄⁄) ƒ x ]  =  [ f ⁄⁄ƒ X(f⁄⁄) x ].
Using this pairing, we obtain a canonical map

Y⁄* ƒC  X  aaA Hom⁄ ⁄(X,⁄⁄Y⁄).
The verification of the next result is left to the reader.

Proposition 2. The canonical map described above is an isomorphism

Y⁄* ƒC  X  ahaA Hom⁄ ⁄(X,⁄⁄Y⁄) .

We can now apply Proposition 1 to this situation using the canonical isomorphism 

Hom C ( Y⁄*, V) ahaA Y ƒ V .

We see that there is a bijection between the linear maps  Hom⁄ ⁄⁄(X, Y) aAV  and the linear
maps  X aAYƒV.  To describe this bijection explicitly, we need the natural transformation

g :  X  aaaA Y⁄⁄ƒ ⁄⁄Hom⁄ ⁄⁄(X, Y)
defined as follows. For any  C Œ C and any basis  e1 , . . . , en of  Y(C),  we put

gC (x) = e i ƒ [e i
*

ƒ x]
i = 1

n

Â .

We leave to the reader the verification that  g is natural.

X Y ƒ Hom  (X, Y) 
⁄

Y ƒ V

n
1 ƒ ñ 

g

Proposition 3. For any natural transformation  n :  X aAYƒV,  there exists a unique linear

m a p ñ  :  Hom⁄ ⁄⁄(X, Y) aAV  such that the above triangle commutes.

We can now describe the map

D :  Hom⁄ ⁄⁄(X, Z)  aaaAHom⁄ ⁄⁄(Y, Z) ƒ Hom⁄ ⁄⁄(X, Y)
whose dual is the usual composition map

Hom(Y, Z) ƒ Hom(X, Y)  aaaAHom(X, Z) .
We have  D = ñ  where  n  is the composite

X g Y ƒ Hom⁄ (X , Y ) g ƒ 1 Z ƒ Hom⁄(Y , Z) ƒ Hom⁄ (X , Y ) .

A short calculation gives
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D [fƒ x] = [fƒ y i] ƒ [y i ƒ
* x]

i = 1

n

Â
where  xŒX(C), f ŒZ(C)⁄* and  {⁄y1 , . . . , yn⁄⁄}, {⁄y⁄1* , . . . , yn

*⁄⁄}  are dual bases of  Y(C), Y(C)⁄*.  In

particular,  D defines a coalgebra structure on  End⁄(X) = Hom⁄ ⁄⁄(X, X) :

D :  End⁄ ⁄⁄(X)  aaaAEnd⁄ ⁄⁄(X) ƒ End⁄ ⁄⁄(X) .
To compute D explicitly, recall that, for any vector space  V,  there is a coalgebra structure
on  End(V)  since  End(V)  is self dual and is itself an algebra. If  e1 , . . . , en is a basis of  V
then the coalgebra structure  d :  End(V) aAEnd(V) ƒ End(V)  is given by

d(e i j ) = ei k ƒ e k j
k = 1

n

Â
where  ei ⁄⁄j = ei

*ƒ ej ;  the counit is the trace map  Tr : End(V) aAC .  The canonical map

End(X(C)) End ⁄

C Œ C
Â (X)

expresses the coalgebra  End⁄ ⁄(X)  as a quotient of the direct sum of coalgebras. This implies
that we have

D [e i j] = [e i k] ƒ [ek j]
k = 1

n

Â ,

and that the counit  e :  End⁄ ⁄(X) aAC is given by  e [A] = Tr A .

The following result supplements Section 3 Theorem 1.

Proposition 4. For any topological monoid M,  the Fourier cotransform

F⁄⁄⁄ :  End⁄ ⁄⁄(U) aaaAR(M)
is an isomorphism of coalgebras.

Proof. Let  VŒRep⁄(M, C⁄⁄)  and take  AŒEnd(V). The calculation

e F⁄[A ] = Tr(p V (e)A) = Tr(A) = e[A ]

shows that  F⁄⁄⁄ preserves counits. If  e1 , . . . , en is a basis of  V  then we have
F ⁄( [e i j]) (x) = Tr(p V (x) e i j ) = e i

*(p V (x) e j ) = p i j(x) .

This shows that  F⁄⁄⁄ preserves  D since

D p i j = p i k ƒ p k j
k = 1

n

Â , D[e i j ] = [e i k ] ƒ [ek j ]
k = 1

n

Â ,

and  End⁄ ⁄(U)  is the linear span of the elements  [ ei ⁄j ]  as  V  runs over the representations
of  M. qed

When  G  is a compact group, we have a canonical map of coalgebras

i : End(Vl )
l Œ G⁄

Â End⁄(U) .

It is an isomorphism since  t i  is the isomorphism  q  of Section 1 Proposition 4.  We shall
use this map to identify   End⁄ ⁄(U)  with  S lEnd(Vl⁄).  With this convention, the following
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result is the dual of Section 3 Corollary 6.

Corollary 5. For any compact group G, the Fourier cotransform provides an i somorph i sm
of coalgebras:

F
⁄

: End ( Vl )
l Œ G⁄

Â ~ R(G) .

It is of interest to see the description of the inverse cotransform

F⁄ - 1 : R(G) End (Vl)
l Œ G

⁄
Â .

The orthogonality relations imply that, for any  fŒR(G),  we have

F⁄ - 1(f) (l) = d l p l
G

Ú (x)- 1 f(x) dx .

Recall that a (right) comodule over a coalgebra  E  is a vector space  V  equipped with
a coaction

a :  V aaAV ƒ E
which is associative and unitary; that is, the following diagrams commute.

V V ƒ E

V ƒ E V ƒ E ƒ E

a

a a ƒ E

V ƒ  d

V V ƒ E
a

V

V ƒ  e

When  V ⁄⁄is finite dimensional, there is a bijection between comodule structures
a : V aAV ƒ E  and coalgebra maps  

~a : End(V) E .

If  e1 , . . . ,  en is a basis for  V  then we have

a(e i) = e j ƒ a i j
j = 1

n

Â

where  (ai ⁄j⁄)  is a matrix with entries in  E.  Putting  ei ⁄j = ei
* ƒ ej ,  we then see that the

coalgebra map determined by  a is given by the equations
~a (e i j) = a i j .

We have the formulas

~a (f ƒv) = (f ƒ 1) a(v) , a(v) = e i ƒ ~a
i = 1

n

Â (e i ƒ
* v)

valid for all  v ŒV  and  f ŒV*.  Expressed in terms of the matrix  (ai ⁄j⁄),  the associativity and
unitarity conditions are very simply:

d a =  a ƒ a and       e a =  id
where

d (ai ⁄j⁄)  =  ( d ⁄ai ⁄j ) ,     (ai ⁄j⁄) ƒ (ai ⁄j⁄)  =  ( Sk ai ⁄k ƒ ak⁄j ) , e (ai ⁄j⁄)  =  ( e ⁄ai ⁄j ) ,     id  =  (d i ⁄j⁄) .
The vector space  V  is canonically a comodule over the coalgebra  End(V)  via the coaction
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c  :  V aaAV ƒ End(V) ,        c⁄(x) = Si ei  ƒ ( ei
* ƒ x );

the corresponding coalgebra map
~c : End (V) End (V)

is the identity map of  End(V).

Warning. The dual  E* of a coalgebra is naturally an algebra. However, the reader should
note that a right comodule over  E  has a natural structure of a left E*-module (but not of a
right E*-module). If  a : V aAV ⁄ƒ ⁄E  is the coaction then, for all  f�ŒV* and  vŒV,  we have

f ∑ v  =  (1ƒ ⁄f ) a(v).

A morphism  f  :  (V, a ⁄) aA(W, b ⁄)  of E-comodules is a linear mapping  f : V aAW
such that the following square commutes.

V V ƒ E

W  W ƒ E

a

f f ƒ E

 b

The category of (right) E-comodules will be designated by  Comod⁄⁄E,  and its full subcategory
of finite dimensional comodules will be denoted by  Comodf ⁄⁄E.

It is instructive to compute the finite dimensional comodules over the coalgebra
R(M)  for any topological monoid  M.  First, for any  V ŒRep⁄⁄(M,⁄⁄C⁄⁄),  if we compose the map

g V ⁄⁄:⁄⁄VaAV ⁄⁄ƒ ⁄End⁄(U ⁄)⁄⁄⁄⁄⁄with the Fourier cotransform, we obtain a map ⁄⁄cV : VaAV ⁄⁄ƒ ⁄⁄R(M)
which is a coaction. To see this, pick a basis  e1, . . . , en of  V.  Then a short computation
gives

c V(e i) = e j
ƒ p i j

j = 1

n

Â
where  (⁄⁄pi ⁄j )  is the matrix of  pV in the basis  e1, . . . , en.  The identities

p i j(x y) = p i k(x) p k j(y ) , p i j(e) = d i j
k = 1

n

Â
mean that  d(p) = p ⁄⁄ƒ ⁄⁄p,   e(p) = id,  and therefore that  cV is a coaction. We have defined a
functor

U~ :  Rep⁄⁄(M,⁄⁄C⁄⁄)  aaaA Comodf ⁄⁄R(M).

Proposition 6. For any topological monoid  M,  the functor  U~ is an equivalence o f
categories.

Proof. It suffices to describe an inverse  U~–1.  Let  (V,⁄⁄a)  be a finite dimensional comodule
over  R(M).  We have

a(e i) = e j ƒ a i j
j = 1

n

Â
where  e1, . . . , en is a basis for  V.  The relations  d(a) = a ⁄⁄ƒ ⁄⁄a,   e(a) = id  mean that the
matrix  (⁄⁄ai ⁄j⁄⁄)  determines a representation  p of  M  which is continuous since the
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functions   ai ⁄j are.  We put  U~–1⁄(V,⁄⁄a) = (V,⁄⁄p). qed

Let  C be a category. An E-comodule structure on a functor  X :  C aAVectC is a
natural transformation

a : X aAX ƒ E
such that  aC  is a comodule structure on  X(C)  for all  CŒC.  Using  a,  we obtain a functor 

(X,⁄⁄a)  :  C aaAComod⁄⁄(E)
by putting  (X,⁄⁄a)(C) = (X(C),⁄⁄aC⁄).  This functor fits into a commutative triangle

Comod⁄⁄(E⁄⁄)

U

Vect
C

C

(X,⁄⁄⁄a)

X

where  U is the forgetful functor. What is more, it is clear that any functor  X~ :  C
aAComod⁄⁄(E)  such that  U ⁄⁄X~ = X  is of the form  (X,⁄⁄a)  for a unique comodule structure  a
on  X.  When  X  takes its values in finite dimensional vector spaces, the natural trans-
formation g :  X aaAX ƒ ⁄⁄End⁄(X)  defines an  End⁄⁄(X)-comodule structure on  X.  This
follows from the commutativity of the triangles

X(C) X(C) ƒ End (X) 

X(C) ƒ End(X(C)) 

⁄

c

g
C

X(C) ƒ [  ]

where  c  is the  End(X(C))-comodule structure on  X(C)  and where  [  ] : End(X(C))
aAEnd⁄(X)  is the canonical morphism of coalgebras.

Proposition 7. Let  X :  C aAVectC be a functor whose values are finite d imensional
vector spaces. For any coalgebra E  and any comodule structure n : X aAX ƒ E,  there is

precisely one morphism ñ : End⁄(X) aAE  of coalgebras such that the following triangle
commutes .

X X ƒ End (X) 

X ƒ E

⁄

n

g⁄⁄

X ƒ ñ

Proof. To prove this Proposition, it suffices to verify that the linear map  ñ, whose existence
and uniqueness are assured by Proposition 3, is a map of coalgebras. The verific-ation is left
to the reader. qed
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§5. Tannaka duality for homogeneous spaces.

In this part we show how Tannaka duality can be used to obtain results on
homogeneous spaces. The proof given here is independent of the proof in Section 1. As i n
Section 2, the results proved here can be used to show that any homogeneous space over a
compact Lie group is a (real) algebraic variety. This is the basis for the construction of
quantum homogeneous spaces such as quantum spheres [⁄Pd⁄].

Let  G  be a compact group. By a (left) G-space we mean a topological space  X
equipped with a continuous (left) action  G ¥ X aAX.  A G-space is h o m o g e n e o u s when it
is non-empty and the action is transitive. For each closed subgroup  HÃ ⁄G,  the space  G/H
of orbits for the action of  H  on the right of  G  is a homogeneous G-space. If  KÃ ⁄G  is
another subgroup, we shall write  K\G/H  for the space of orbits for the action of  K  on the
left of  G/H.

Let  X  be a homogeneous G-space. For any representation  V  of  G,  we shall write
V X for the vector space  HomG(X,⁄⁄V)  of G-invariant maps from  X  to  V.  If we choose a
basepoint  x0ŒX  and  H  is the stabilizer of  x0 ⁄⁄,  then the map  g jAg x0 induces an
isomorphism between  G/H  and  X,  while the map  a jAa(x0)  defines an isomorphism
between  V X and the subspace  V H⁄ÃV  consisting of the H-invariant vectors. For all
V ŒRep⁄(G,⁄⁄C⁄⁄),  putting

UX⁄(V) = VX and   UH⁄(V) = VH ,
we obtain two isomorphic functors

UX⁄,  UH⁄ :  Rep⁄(G,⁄⁄C⁄⁄)  aaaA VectC .

Let  Y  be another homogeneous G-space. We define the Fourier transform of a G-
invariant function  f⁄⁄Œ⁄⁄C⁄(Y⁄¥ ⁄X,⁄⁄C⁄⁄)  to be the natural transformation

F⁄⁄f  :  UX aaA UY

whose value at  VŒRep⁄(G,⁄⁄C⁄⁄)  is the linear map
(F⁄⁄f⁄⁄)V :  VX aaAV Y

given by the formula

(Ff )
V

(a) (y ) = f(y , x) a(x) dx
X

Ú
where  dx  is the normalised Haar measure on  X.  As in Section 1, it can be proved that the
projection

Hom(UX, UY) Hom
l Œ G

⁄
’ (Vl

X, Vl
Y)

is an isomorphism, so that we can view the Fourier transform as a map

F : C (Y ¥ X , C )G Hom
l Œ G

⁄
’ (Vl

X, V l
Y) .

We now want to show that  F defines an isometry of Hilbert spaces. Let  L2(Y⁄¥ ⁄⁄X)  denote
the space of square integrable functions on  Y⁄¥ ⁄⁄X  with respect to the product  dx⁄⁄dy  of the
normalised Haar measures on  X  and  Y.  Also, let  L2(Y⁄¥ ⁄⁄X/G)  denote the space of square
integrable functions on  Y⁄¥ ⁄⁄X/G  with respect to the projection onto  Y⁄¥ ⁄⁄X/G  of the product
measure   dx⁄⁄dy.  The space  L2(Y⁄¥ ⁄⁄X/G)  is isometric to the subspace  L2(Y⁄¥ ⁄⁄X)G of G-
invariant elements of  L2(Y⁄¥ ⁄⁄X)  in which  C⁄(Y⁄¥ ⁄X,⁄⁄C⁄⁄)G is dense. On the other hand, for any

lŒG⁄,  there is a canonical Hilbert space structure on  Hom(Vl
X ,⁄V l

Y⁄)  that we shall now
describe. More generally, any G-invariant inner product on  X  induces an inner product on
V X given by
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·⁄a,⁄⁄b⁄Ò  =  · ⁄a(x0),⁄⁄b(x0)Ò
where the value of the right hand side does not depend on the choice of the basepoint
x0ŒX  since we have

·⁄a(sx0),⁄⁄b(sx0)Ò  =  ·s ⁄a(x0),⁄s ⁄b(x0)Ò  =  · ⁄a(x0),⁄⁄b(x0)Ò .
Using  inner products on  V l

X and  V l
X which are induced by some G-invariant metric on

V l ,  we can define the adjoint  f⁄⁄* : V l
YaAV l

X of any map  f⁄⁄ : V l
X ⁄aAV l

Y.  This adjoint
does not depend on the particular choice of the G-invariant metric on V l.  On the vector
space  Hom(Vl

X ,⁄V l
Y⁄⁄)  we shall use the inner product

·⁄f,⁄⁄g⁄Ò  =  dlTr⁄(f⁄⁄*g)
where  dl denotes (as before) the dimension of  Vl .

Theorem 1. The Fourier transform extends continuously to an isometry

F : L2( Y ¥ X / G ) ~ h ilbe rt Hom(V l
X, V l

X)
l Œ G⁄

Â .

Proof. We can suppose that  X = G/H  and  Y = G/K.  Let  pH : VaA V H be the averaging
operator defined for any  VŒRep⁄(G,⁄⁄C⁄⁄)  by the formula

p H (v) = h vdh
H

Ú
where  dh  is the normalised Haar measure on  H.  If  iK : V K gAV  denotes the inclusion,
it is easy to see that the map  f jA iK f pH defines an isometric embedding of
Hom(Vl

H ,⁄V l
K ⁄⁄)  into  Hom(Vl ,⁄V l⁄⁄).  We obtain in this way an isometric embedding

a :
h i l bert

Ho m(V l
H , V l

K

l Œ G
⁄

Â )
h i l be rt

Hom(V l , V l )
l ŒG

⁄
Â

whose image consists of the elements which are fixed under the actions of  K  on the left
and  H  on the right. On the other hand, the map  g jA(y0 , g x0 ⁄)  induces a measure
preserving homeomorphism between  K\G/H  and  Y⁄⁄¥ ⁄⁄X⁄⁄/⁄⁄G  (the measure on K\G/H  is
obtained by projecting the Haar measure on  G ). This defines an isometric embedding

b : L2 (Y ¥ X / G) L2 (G)
whose image consists of the elements fixed by  K  (on the left) and by  H  (on the right). The
Theorem then follows from the relation

F o b =  a o F
and the fact that the Fourier transform of Section 1 Theorem 14 respects the actions of  G
on the left and on the right on both its domain and codomain. qed

When  Y = G  acting on itself by left translation, we have  Y⁄⁄¥ ⁄⁄X⁄⁄/⁄⁄G @  X.  We can
define the Fourier transform of a function  f Œ C⁄⁄(X,⁄⁄C⁄⁄)  to be the natural transformation

F⁄⁄f  :  UX aaA U
whose value at   VŒRep⁄(G,⁄⁄C⁄⁄)  is given by the formula

( Ff )V (a) = f(x) a(x) dx
X

Ú .

Corollary 2. The Fourier transform can be extended continuously to an isometry

F : L2( X ) ~ h ilbe rt Hom(V l
X, V l )

l Œ G⁄
Â .
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At this point we want to have similar results for the Fourier transform of
generalised distributions on  X.  We shall let  R(X)  denote the set of elements of  C⁄⁄(X,⁄⁄C⁄⁄)
whose orbits generate a finite dimensional subspace of  C⁄⁄(X,⁄⁄C⁄⁄).  According to Section 2
Proposition 1, this  R(G)  is the set of representative functions on  G  (as before). When  X =
G/H,  we have  R(G/H) = R(G)H.  Let us see that, for all  V ŒRep⁄(G,⁄⁄C⁄⁄),  aŒV X,  and  f ŒV ⁄*,
the function  x jAf (a(x))  belongs to  R(X).  But, if  x0ŒX,  then the function  

g jAf (a(g⁄⁄x0)) = f (pV(g⁄⁄)⁄⁄a(x0))
belongs to  R(G)  and is invariant under right translation of the stabilizer  H  of  x0;  this
proves the claim. We now define the Fourier transform  F⁄⁄h  of an element  hŒR(X)⁄*.  For
V ŒRep⁄(G,⁄⁄C⁄⁄),  let  e1 , . . . , en be a basis for  V.  Every element  aŒV X can be written as

a(x) = ai
i = 1

n

Â (x) e i

where  ai ⁄(x)ŒR(X)  since  ai ⁄(x) = ei
*(a(x)).  We put

( Fh) V (a) = · h , a i Ò e i
i = 1

n

Â .

Proposition 3. The Fourier transform defines an isomorphism of topological vector spaces

F : R(X)* ~ Hom(V l
X

l Œ G
⁄

’ , Vl ) .

Proof. We can suppose that  X = G/H  and consider the averaging operation
pH :  R(G)  aaA R(G/H)

defined by

p H ( f ) = f(x h) dh
H

Ú .

Composition with  pH determines an embedding
b :  R(G/H)⁄* aaAR(G)⁄*

whose image is the set of (generalized) distributions which are invariant under right
translation by the elements of  H.  Similarly, if we compose with the averaging operators
pH :  Vl

aAV l
H,  we obtain a map

a : Hom(V l
H

l Œ G
⁄

’ , Vl ) Hom(Vl
l ŒG

⁄
’ , Vl )

whose image consists of the elements which are invariant under right translation by
elements of  H.  The result then follows from the identity

F o b =  a o F
and Section 3 Corollary 6. qed

The next thing to do is to define the Fourier transform of G-invariant generalized
distributions on  Y⁄⁄¥ ⁄⁄X.  We shall do this without choosing basepoints in  X  and  Y.

Definition. Let  G  be a compact group acting continuously on a topological vector space  V.
An element  vŒV  is G-finite when its orbit generates a finite dimensional subspace of  V.

By definition,  R(X)  is the set of G-finite elements of  C⁄⁄(X,⁄⁄C⁄⁄).  Let us see that  R(X)  is
also equal to the G-finite elements of  R(X)⁄*.  To do this, let  j  :  R(X) aAR(X)⁄* be the map
which associates to a function  fŒR(X)  the measure  f⁄(x)⁄dx  on  X.  For any  gŒR(X),  we
have
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· j(f) , g Ò = f (x) g(x) dx .
X

Ú
The image of  j  consists of G-finite elements since  j  is G-equivariant and every element of
R(X)  is G-finite. Let  R(X)∞ denote the set of G-finite elements of  R(X)⁄*.

Proposition 4. The mapping  j  determines an isomorphism
R(X)  ahA R(X)∞.

Moreover,  R(X)∞ is dense in R(X)⁄*.

Proof. We shall prove the result when  X = G;  the general result is proved similarly. If we
use the isomorphism

F : R(G)* ~ Hom(Vl
l Œ G⁄

’ , Vl ) .

This reduces the problem to proving that, if an element
g Œ End(Vl )

l Œ G⁄
’

is G-finite (for the left action of  G) then all except a finite number of its components are
zero. For each  lŒG⁄,  let  pl = ( pl(d) | dŒG⁄ )  be the projection operator, where

p l (d) =
id if d = l
0 otherwise .{

Then the orthogonality relations imply that  pl = F⁄⁄(dl -cl⁄)  where  cl is the character of  V l.

We have the formula

p l g = d l c l
G

Ú (x) p(x)g dx

which shows that, if  g  is G-finite, then all its components  pl⁄g  belong to the finite
dimensional subspace generated by the orbit  Gg.  This proves that  pl⁄g = 0  except for a

finite number of  lŒG⁄. qed

Let  R(Y⁄¥ ⁄⁄X)  be the set of  G⁄¥ ⁄⁄G-finite elements of  C⁄⁄(Y⁄¥ ⁄⁄X,⁄⁄C⁄⁄).  We have a canonical
isomorphism

R(Y⁄¥ ⁄⁄X)  @ R(X)⁄⁄ƒ ⁄⁄R(Y) .

For all elements  hŒ R(X)⁄* ⁄⁄Y,  the pairing

(g , f) | g(y ) · h(y ), f Ò dy
Y

Ú
is a G-invariant bilinear form  r(h)  on  R(Y)⁄⁄¥ ⁄⁄R(X).  Let us say that a generalized
distribution  tŒ R(Y⁄¥ ⁄⁄X)⁄* is right regular when it is of the form  r(h)  for some  hŒ
C⁄⁄(Y,⁄⁄R(X)⁄* ⁄⁄).

Proposition 5. Every G-invariant generalized distribution is regular. More precisely, t h e
m a p r  defines an isomorphism

HomG⁄(Y,⁄⁄R(X)⁄* ⁄)  @ HomG⁄(⁄R(Y⁄¥ ⁄⁄X),⁄⁄C⁄⁄).

Proof. We describe an inverse to  r.  We compose the canonical isomorphisms
HomG⁄(⁄R(Y⁄¥ ⁄⁄X),⁄⁄C⁄⁄)  @ HomG⁄(⁄R(Y)⁄ƒ ⁄R(X),⁄⁄C⁄⁄)  @ HomG⁄(⁄R(X),⁄⁄R(Y)⁄* ⁄⁄)

@ HomG⁄(⁄R(X),⁄⁄R(Y)∞⁄)  @ HomG⁄(⁄R(X),⁄⁄R(Y))
with the isomorphism

k  :  HomG⁄(⁄R(X),⁄⁄R(Y))  aaA HomG⁄(⁄Y,⁄⁄R(X)⁄* ⁄⁄)
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defined as follows. For any G-invariant operator  u : R(X) aAR(Y),  we put
· k(u)(y)⁄,⁄⁄f⁄⁄Ò =  u(f⁄)(y).

We leave the reader to check that  k  is bijective and we have defined an inverse to  r. qed

We can now describe the Fourier transform of  tŒR(Y⁄¥ ⁄⁄X)⁄* ⁄⁄G.  According to
Proposition 5,  t  is right regular, so that  t = r(h)  for some  hŒHomG⁄(Y,⁄⁄R(X)⁄* ⁄).  For all
V ŒRep⁄(G,⁄⁄C⁄⁄),  we want to define the Fourier transform

(F⁄⁄t)V :  VXaaA⁄V Y.

Let  e1 , . . . , en be a basis for  V.  For all  aŒV X,  we can write  a  =  Si ai ei where  aiŒR(X).
Then we have

(F t) V (a)(y) = · h(y) , a i Ò e i
i = 1

n

Â .

Proposition 6. The Fourier transform defines an isomorphism of topological vector spaces

R(X ¥ Y)* G @ Hom(Vl
X, Vl

Y

l Œ G
⁄

’ ) .

Proof. If we exponentiate the Fourier transform of Proposition 3 by  Y, we obtain an
isomorphism

R(X )* Y @ Hom (Vl
X, V l

Y

l Œ G
⁄

’ ) .

Composing this with the isomorphism of Proposition 5, we have the Fourier transform as
defined above. qed

To complete these results, we should describe the Fourier cotransform

F⁄⁄ :  Hom⁄(U ⁄X ,⁄U ⁄Y⁄⁄) aaA R(Y⁄¥ ⁄⁄X)⁄G .

We shall suppose that  Y = G  and postpone the general case. We want to describe the
cotransform

F⁄⁄ :  Hom⁄(U ⁄X ,⁄U ⁄⁄) aaA R(X)⁄.

For all  VŒRep⁄(G,⁄⁄C⁄⁄),  all  f ŒV * and all  aŒV X,  we put

F⁄⁄(⁄[f ⁄ƒ ⁄a]⁄)  =  f o a .

Proposition 7. The Fourier cotransform  F⁄⁄ is an isomorphism

Hom⁄(U ⁄X ,⁄U ⁄⁄) ahA R(X)⁄.

We now want to use these results to study the spectrum of the algebra  R(X).  Let us
first remark that, for all  V, WŒRep⁄(G,⁄⁄C⁄⁄),  we have a canonical pairing

ƒ :  V⁄X⁄¥ ⁄⁄W ⁄X aaA (V⁄ƒ ⁄W )⁄X (a,⁄⁄b) jAa⁄ƒ ⁄b
defined by  (a⁄ƒ ⁄b)(x) = a(x)⁄ƒ ⁄b(x).  We also have a unit element  1ŒC⁄X = C .

Definition. A natural transformation  u : U ⁄X aA⁄U is tensor preserving when, for all  V,
W ŒRep⁄(G,⁄⁄C⁄⁄),  aŒV ⁄X⁄,  bŒW ⁄X,  the following equations hold:

uV ⁄ƒW(a⁄ƒ ⁄b)  =  uV ⁄(a)⁄ƒuW(⁄b)   and   uI⁄(1) = 1.

Let  Homƒ(U ⁄X ,⁄U ⁄⁄)  denote the set of tensor-preserving natural transformations. There is
also the notion of self-conjugate natural transformation  u : U ⁄X aA⁄U ;  this means that
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u
V

(a) = u
V

(a)

for all  V ŒRep⁄(G,⁄⁄C⁄⁄)  and all  aŒV ⁄X.  Let  T⁄⁄⁄(X)  denote the set of self-conjugate tensor-
preserving natural transformations  U ⁄X aA⁄U .

For all  xŒX,  we have an element  p ⁄⁄(x)ŒT⁄⁄⁄(X)  defined by  p ⁄⁄(x)V ⁄⁄(a) = a(x)  for  aŒV ⁄X.
There is also the canonical map  j : X aAR(X)* defined by  ·⁄j(x),⁄⁄f⁄⁄Ò = f⁄(x).

Proposition 8. The Fourier transform  F induces the following isomorphisms of topological
spaces:

Spec(R(X)) ahA Homƒ(U ⁄X ,⁄U ⁄⁄) ,           SpecR(R(X)) ahAT⁄⁄⁄(X).

Moreover, the following triangle commutes.

X Spec R(X)
R

T (X)

j

p
F

Proof. Let  hŒR(X)* and let  V, W ŒRep⁄(G,⁄⁄C⁄⁄).  Let us choose a basis  e1 , . . . , en for  V  and a

basis  f1 , . . . , fn for  W.  For any  aŒV ⁄X   and  bŒW ⁄X,  we have  a = Si ai ei and  b = Sj bj fj .
The equation

(F⁄⁄h)V ⁄ƒW(a⁄ƒ ⁄b)  =  (F⁄⁄h)V ⁄(a)⁄ƒ ⁄(F⁄⁄h)W(b)
means exactly that we have

·⁄h,⁄⁄ai bj⁄⁄Ò = ·⁄h,⁄⁄ai ⁄Ò · ⁄h,⁄ bj⁄⁄Ò.
Similarly, the self-conjugacy condition for  F⁄⁄h  means exactly that we have

· h, a i Ò = · h, a i Ò .

This proves the Proposition since the coefficients  ai linearly generate  R(X). qed

Let  V ŒRep⁄(G,⁄⁄C⁄⁄)  and let  g : V ⁄⁄ƒ ⁄⁄V aAC be a positive definite invariant hermitian
form. Let us see that, for any  uŒT⁄⁄⁄(X), the map  uV :  V X ⁄aA⁄V  is an isometric embedding,
where the metric on  V X is the one induced from  g  on  V.  We can view  g  as a C-linear
pairing  h : _V ⁄⁄ƒ ⁄⁄V aAC and we can repeat mutatis mutandis the proof of Section 1
Proposition 5. We obtain that

g(uV ⁄(a),⁄⁄uV ⁄(b)) = g(a,⁄⁄b),
which means that  uV is an isometric embedding. The collection of these embeddings is
compact, since it is a homogeneous space over the unitary group  U(V,⁄⁄g⁄).  It follows that
T⁄⁄⁄(X)  is a closed subspace of a product of compact spaces. This proves:

Proposition 9. T⁄⁄⁄(X)  is compact.

We next want to prove that  X ahAT⁄⁄⁄(X).  For this we need some preliminaries.
Suppose that  G  acts continuously on some compact space  S.  Let  A ⁄⁄Ã ⁄⁄C⁄(S,⁄⁄C⁄⁄)  be a
subalgebra which separates points of  S  and which is closed under conjugation.

Lemma 10. If A  is stable under the action o f G  and every element o f A is G-finite t h e n
AG separates the orbits of G i n S.
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Proof. Consider the averaging operator  E : C⁄(S,⁄⁄C⁄⁄) aAC⁄(S,⁄⁄C⁄⁄)  defined by

E(f)(x) = f (g x)dg
G

Ú .

If  fŒA  then  E(f⁄)ŒA  since  E(f⁄)  belongs to the convex hull of the orbit  Gf  whose linear
span is a finite dimensional subspace of  A.  Let  p : S aAS/G  be the projection, and let  c,
c' Œ S/G  be any two distinct orbits of  G  in  S.  The space  S/G  is compact and so there is a
continuous function  f : S/G aAR such that  f (c) = 0  and  f (c') = 1.  It follows from the
Stone-Weierstrass Theorem that  A  is dense in  C⁄(S,⁄⁄C⁄⁄); so we can find  f⁄ŒC⁄(S,⁄⁄C⁄⁄)  such that

f - f°p £ 1
4

where we use the uniform norm. We have

E(f) - f°p = E(f - f°p) £ f - f°p £ 1
4 .

This implies that, for all  xŒc  and  yŒc',

E(f)(x) - E(f)(y) ≥ 1
2 .

So we have found an element  E(f⁄)ŒAG which separates the orbits  c, c'. qed

Theorem 11. The maps  p, j  provide two homeomorphisms

p : X ahA T⁄⁄⁄(X)    and j : X ahASpecR(R(X)).

Proof. To prove that  j  is injective is equivalent to proving that  R(X)  separates the points
of  X.  But this follows from Lemma 10 since we have  X @ G/H,  R(X) = R(G)H and  R(G)
separates the points of  G  (Section 1 Corollary 13). Let  S = SpecR(R(X)).  Then  S  is compact
since  T⁄⁄⁄(X)  is (Proposition 9) and Fourier transform gives a homeomorphism  S @ T⁄⁄⁄(X).
The group  G  acts on  S  since it acts on  R(X).  This action is continuous since  S Ã R(X)⁄*

and  G  acts continuously on  R(X)⁄*.  The algebra  A = R(X)  becomes a subalgebra of  C⁄(S,⁄⁄C⁄⁄)
if we put  f⁄⁄(c ⁄) = c ⁄(⁄f⁄⁄)  for all  fŒR(X)  and  cŒS.  Clearly,  A  separates the points of  S  and
the hypotheses of Lemma 10 are satisfied. This proves that  AG separates the points of  S/G.
But we have  AG = R(X)G = C,  and so  S/G  must reduce to a singleton. This implies that  j :
X aAS  is surjective since its image  j(X)  is an orbit of  G  in  S.  We have proved that  j  is
a homeomorphism. It follows that  p is a homeomorphism, since  p = F⁄⁄o⁄⁄j . qed

§6. Minimal models.

A m o d e l of a representative function  f  on a topological monoid  M  is a pair
(f ,⁄⁄v)ŒV *¥ ⁄⁄V  such that  f(x) = f ⁄(⁄pV(x)⁄v)  where  V  is some representation of  M.  Such a
pair is far from being unique. A model is m i n i m a l if  dimV  is minimal. It is easy to see
that a given representative function has a minimal model which is unique up to a
(unique) isomorphism. In this part, we shall extend the concept of minimal model by
giving a description of the elements of the tensor product of any two functors which satisfy
some exactness conditions. This description is the key technical tool for proving the
Representation Theorem of Section 7.

Recall that a category  C is C-additive when each of its homsets  C ⁄(A,⁄⁄B)  has the
structure of a complex vector space and composition is C-bilinear. Recall also that a functor
F : C aAD between C-additive categories is C-additive when the maps

F  :  C ⁄⁄(A,⁄⁄B)  aaaA D⁄⁄(FA,⁄⁄FB)
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are C-linear.
Let  C be an abelian C-additive category. We shall suppose that  C is artinian,

meaning that each decreasing sequence of subobjects in  C terminates. Let  T : C aAVectC

be a left exact C-additive functor. We shall need the category  el⁄⁄(T)  of e lements of  T.  A n
object of  el⁄⁄(T)  is a pair  (A,⁄⁄x)  consisting of  AŒC and  xŒT(A).  A arrow  f  :  (A,⁄⁄x) aA(B,⁄⁄y)
in  el⁄⁄(T)  is an arrow  f : A aAB  such that  T(⁄f⁄⁄)(⁄x⁄) = y.  We shall say that  xŒT(A)  is
contained in a subobject  BÅAA  when  x  is in the image of the map  T(B)ÅAT(A).  From
the left exactness of  T  we see that, if  x  is contained in the subobjects   BÅAA  and
B 'ÅAA,  then it is contained in their intersection  BŸB 'ÅAA.  Using the artinian property
of the poset of subobjects of  A,  it follows that  x  is contained in a smallest subobject
Span(x)  of  A.  When  Span(x) = A,  we say that  x  generates A.  We also need the full
subcategory  Span(T)  of  el⁄⁄(T)  whose objects are the pairs  (A,⁄⁄x)  in which  A = Span(x).
Observe that, between any two objects of  Span(T),  there is at most one arrow. To see this,
suppose  f, g : (A,⁄⁄x) aA(B,⁄⁄y);  so  x  is contained in  Ker(f – g⁄⁄)  since  T(⁄f⁄⁄)(⁄x⁄) = y = T(⁄g⁄⁄)(⁄x⁄).
Therefore,  f = g  since  A = Span(x).  Note also that, if  f : (A,⁄⁄x) aA(B,⁄⁄y)  is an arrow i n
Span(T), ⁄the map ⁄⁄f : A aAB  is epimorphic. This is because  T(⁄f⁄⁄)(⁄x⁄)  is contained in the
image of  ⁄f  and therefore  Im(⁄f⁄⁄) = B  since  T(⁄f⁄⁄)(⁄x⁄) = y  is generating.

We can now give a first description of the elements of the tensor product  S ƒC T  for

any contravariant C-additive functor  S.  We suppose that the abelian category  C is
artinian and that the covariant functor  T  is left exact. We shall write  [⁄f ƒ x⁄]  for the image
of a pair  (f ,⁄⁄x)  by the canonical map

S(A) ¥ T(A) aaA S ƒC T.

Proposition 1. Under the above hypotheses, any element of  S ƒC T  is of the f o r m [⁄f ƒ x⁄]
for some  (f ,⁄⁄x) Œ S(A) ¥ T(A)  for w h i c h A = Span(x).  Moreover, if  (f ,⁄⁄x) Œ S(A) ¥ T(A)
and  (y,⁄⁄y) Œ S(B) ¥ T(B), then the equality  [⁄f ƒ x⁄] = [⁄y ƒ y⁄] holds if and only if there exists
an object  (C,⁄⁄z⁄) Œ Span(T) and arrows

(A , x) f (C, z)
g

(B, y)

such that  S(⁄f⁄)(f ) = S(⁄g⁄)(y).

Proof. We shall use some standard results from category theory [ML]. Since  T  is left exact,
the category  el⁄⁄(T)  has finite limits and is therefore filtered (or codirected).  If  p : el⁄⁄(T)
aAC is the projection functor and  y : C ⁄opaAVectC

C is the Yoneda embedding then we
have the canonical isomorphism

el⁄⁄(T) op opp
CT ~ lim (

y
VectC

C )
.

Tensoring this isomorphism with  S  and using the isomorphisms

S ƒC y⁄(A) @ S(A),
we obtain a canonical isomorphism

el⁄⁄(T) op opp
CS ƒ  T ~ lim ( S VectC )

C .
The result is then a consequence of the standard description of colimits of directed
diagrams, and the fact that  Span(T)  is initial in  el⁄⁄(T). qed

To obtain a more complete description of the elements of  S ⁄⁄ƒC⁄⁄T,  we shall make

additional assumptions on the category  C and the functor  S.  More precisely, we shall
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suppose that  C is noetherian, meaning that each increasing sequence of subobjects
terminates; or equivalently, that  C ⁄op is artinian. We shall also suppose that  S  is left exact,

meaning that  S  transforms right exact sequences in  C into left exact sequences of linear
maps. As before, for any  f ŒS(A),  there is a smallest quotient object  Cospan(f )  supporting
f (we adopt this terminology to avoid confusion with the previous case of a covariant
functor  T ). If  Cospan(f ) = A, we say that  f cogenerates A.  We shall say that a pair  (f ,⁄⁄x)
Œ S(A) ¥ T(A)  is a m o d e l of an element  z Œ S ƒC T  when  z Œ [⁄f ⁄⁄ƒ ⁄⁄x⁄].  A model  (f ,⁄⁄x)  is
m i n i m a l when  Cospan(f ) = A = Span(x).  An i s omorph i sm between  (f ,⁄⁄x) Œ S(A) ¥ T(A)
and  (y,⁄⁄y) Œ S(B) ¥ T(B)  is an invertible map  f : A aAB  such that  S(f⁄⁄–1)(f) = y and
T(⁄f⁄⁄)(x) = y.  In this case we have

[⁄f ⁄⁄ƒ ⁄⁄x⁄]  =  [⁄S(f⁄)(y)⁄⁄ƒ ⁄⁄x⁄]  =  [⁄y ⁄ƒ ⁄⁄T(⁄f⁄⁄)(x)⁄]  =  [⁄y ⁄⁄ƒ ⁄⁄y⁄].
If two minimal models  (f ,⁄⁄x), (y,⁄⁄y)  are isomorphic, the isomorphism is unique since  x
and  y  are generating.

Theorem 2. Suppose that the abelian C-linear category ⁄⁄C is artinian and noetherian, and
that the functors  S  and T  are left exact. Then every element of  S ƒC T  has a m i n i m a l
model which is unique up to a unique isomorphism. Moreover, for any  (f ,⁄⁄x)ŒS(A)⁄¥ ⁄⁄T(A),
there is a minimal pair (f ' ,⁄⁄x') Œ S(A')⁄¥ ⁄⁄T(A') such that  [⁄f ' ⁄⁄ƒ ⁄⁄x '⁄]  =  [⁄f ⁄⁄ƒ ⁄⁄x⁄]  w h e r e A'  is a
subquotient of A.

Proof. We begin by proving the last statement. Let
q j

Span(x) aaaåA' ÅaaACospan(f )

be the image factorization of the composite

i p
Span(x) ÅaaaAA aaaåCospan(f ).

By definition, there exist  x1 and  f 1 such that  S(p)(f 1) = f and  T(i)(x1 ⁄) = x.  If we put  f ' =
S(j)(f 1)  and  x' = T(q)(x1 ⁄)  then we have

[⁄f ' ⁄ƒ ⁄⁄x '⁄]  =  [⁄f ' ⁄ƒ ⁄⁄T(q⁄⁄)(x1 ⁄)]  =  [⁄S(q⁄)(f ' )⁄⁄ƒ ⁄x1 ⁄⁄]  =  [S(jq⁄)(f 1)⁄⁄ƒ ⁄x1 ⁄⁄] 

=  [⁄S(pi⁄)(f 1)⁄⁄ƒ ⁄x1 ⁄⁄]  =  [⁄S(i⁄)(f )⁄⁄ƒ ⁄x1 ⁄⁄]   =  [⁄f ⁄ƒ ⁄⁄T(i⁄⁄)(x1 ⁄)⁄]  =  [⁄f ⁄⁄ƒ ⁄⁄x⁄].
Moreover,  x'  generates  A'  since   x1 generates  Span(x).  Similarly,  f '  cogenerates  A'.
This proves that the pair  (f ' ,⁄⁄x')  is a minimal model of  [⁄f ⁄⁄ƒ ⁄⁄x⁄].  This proves the existence
of a minimal model for each element of  S ƒC T  since all elements of  S ƒC T  are of the
form  [⁄f ⁄⁄ƒ ⁄⁄x⁄]  by Proposition 1. To prove the uniqueness, suppose that  (f ,⁄⁄x) Œ S(A) ¥ T(A)
and (y,⁄⁄y) Œ S(B) ¥ T(B)  are both minimal models of  z.  Let  (C,⁄⁄z), f, g  be as in Proposition
1. The map  f  is epimorphic since  T(f⁄)(z) = x  and  z, x  are both generating. If  s = S(f⁄)(f )
then  Cospan(s) @ A  since  f  is epimorphic and  f is cogenerating. Similarly,  g  is
epimorphic and Cospan(s) @ B  since  y is cogenerating. This proves that we have an
isomorphism   i : A ahAB  such that  i f = g  and  S(i)(y) = f .  We have also

T(i)(x) = T(i)T(f⁄)(z) = T(i f⁄⁄)(z) = T(g)(z) = y.
Hence  i  is an isomorphism between the pairs  (f ,⁄⁄x) ⁄⁄and ⁄⁄(y,⁄⁄y). ⁄⁄We have already
remarked that such an isomorphism must be unique. qed

Corollary 3. For all  (f ,⁄⁄x) Œ S(A) ¥ T(A),  the equality  [⁄f ⁄⁄ƒ ⁄⁄x⁄] = 0  holds if and only if there

39



exists a monomorphism j : BÅAA  such that  x Œ Im(T(j))  and S(j)(f ) = 0.

Proof. Let  (f ' ,⁄⁄x')ŒS(A') ¥ T(A')  be a minimal model of  [⁄f ⁄⁄ƒ ⁄⁄x⁄]  where  A'  is the image of
the map  Span(x) ÅAA aå Cospan(f )  as in the proof of the Theorem. If  [⁄f ' ⁄⁄ƒ ⁄⁄x '⁄] = 0
then  A' = 0  by uniqueness of the minimal model. This shows that the composite  Span(x)
ÅAA aå Cospan(f )  is zero, and the result follows with  B = Span(x). qed

To end this Section, we shall prove that, for any coalgebra  E,  we have an
isomorphism  E @ End⁄(U)  where  U : ComodfE aAVectC is the forgetful functor. W e
have an obvious coaction  a : U aAU ⁄ƒ ⁄⁄E  obtained by putting together all the coactions
aV: V aAV ⁄⁄ƒ ⁄⁄E  where  (V,⁄⁄a) Œ ComodfE.  Using Section 4 Proposition 5, we obtain a
morphism of coalgebras  

~a : End⁄(U) E .

In order to prove this morphism is invertible, we need the following Lemma whose proof
is left to the reader.

Lemma 4. Let  (V,⁄⁄a)  be a finite dimensional comodule over a coalgebra E.  For each  f ŒV *,
the comodule Cospan(f )  is obtained by taking the image factorization of the map

V a V ƒ E f ƒ 1 E .

Proposition 5. For each coalgebra E, the map
~a : End⁄(U) E

is an isomorphism of coalgebras.

Proof. We easily see that, for all  xŒV,  f ŒV * and  (V,⁄⁄a)ŒComodf ⁄⁄E,  
~a [fƒ x] = (f ƒ 1) a V(x).

To prove surjectivity, take  xŒE.  There  is a finite dimensional subcomodule  V Ã ⁄⁄E  such
that  xŒV.  Let  f be the restriction of the counit  e : E aAC to the subspace  V.  Then we
have

~a [fƒ x] = (f ƒ 1)d(x) = (e ƒ 1) d(x) = x .

To prove injectivity, take  z Œ End⁄(U)  in the kernel, and let  (f ,⁄⁄x) Œ V *¥ ⁄⁄V  be a minimal
model of  z.  We have

(f ƒ 1) aV(x) = ~a (z) = 0 .

But Lemma 4 shows that the map  (f ⁄⁄ƒ ⁄1) aV is injective since  f is cogenerating. This
shows that  x = 0  and hence  z = 0. qed

§7. The representation theorem.

In this Section, we shall prove a representation theorem for an abelian category  C
equipped with an exact faithful functor  U  with values in finite dimensional vector spaces.
We prove that  C is equivalent to the category of finite dimensional  E-comodules, where
E  is the coalgebra  End⁄(U)  constructed in Section 4. This result is basic in the theory of
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Tannakian categories in which the category comes first, or is given, and the group comes
second, or is constructed. There are many examples of Tannakian categories in nature,
especially from algebraic geometry in Grothendieck's theory of motives [DM]. The
representation theorem proved here is not needed in the rest of this paper.

We first recall a few properties of the category of comodules over a coalgebra  C.  For
any vector space  V,  the tensor product  V ƒ C  has a comodule structure obtained by left
comultiplication

V ⁄⁄ƒ ⁄⁄d :   V ƒ C aaA V ƒ C ƒ C.
It is the cofree comodule over the vector space  V.  If  a : V aA V ⁄⁄ƒ ⁄⁄C  is a comodule
structure on  V  then  a is also a morphism of comodules from  V  to the cofree comodule
V ƒ C.  The set of subcomodules of  V  is closed under intersections and sums. If  f : V
aAW  is a morphism of comodules then the direct and inverse images under  f  of
subcomodules are subcomodules. For completeness we include a proof of the following
classical result.

Proposition 1. Every comodule is the directed union of its finite dimensional subco-
modules. Every coalgebra is the directed union of its finite dimensional subcoalgebras.

Proof. Let  E Ã V  be a finite dimensional subspace of the comodule  (V,⁄⁄a).  There exists a
finite dimensional subspace  F Ã V  such that  a(E) Ã F ⁄⁄ƒ ⁄⁄C.  We have  E Ã a-1(F⁄⁄ƒ ⁄C)  and
a-1(F⁄⁄ƒ ⁄⁄C)  is a subcomodule since it is the inverse image of the subcomodule  F ⁄⁄ƒ ⁄⁄C  of the
cofree comodule  V⁄⁄ƒ ⁄⁄C.  Moreover, we have  a-1(F⁄⁄ƒ ⁄C) Ã F  since

F ⁄⁄ƒ ⁄⁄C Ã (1⁄⁄ƒ ⁄⁄e)-1⁄⁄(F)     and     a-1⁄(1⁄⁄ƒ ⁄⁄e)-1⁄⁄(F) = ((1⁄⁄ƒ ⁄⁄e)a)-1⁄⁄(F) = F.
This proves the first sentence of the Proposition, and the second sentence follows once we
add this remark: the subcomodules of  C,  as a comodule over  Cop⁄⁄ƒ ⁄⁄C via left and right
comultiplication, are exactly the subcoalgebras of  C  (where  Cop is the opposite coalgebra of
C⁄). qed

We need to prove some results on the category  Comodf ⁄⁄C  of finite dimensional
comodules over a coalgebra  C.

Definition. A full subcategory of an abelian category is replete if it is closed under finite
direct sums, subobjects and quotients.

In this definition it is explicitly assumed that any object isomorphic to an object of
the replete subcategory also belongs to it. For any subcoalgebra  C' Ã C, ⁄we have an
inclusion  Comodf ⁄⁄C' Ã Comodf ⁄⁄C  since every comodule over  C'  is naturally a comodule

over  C.  Note that  Comodf ⁄⁄C'  is a replete subcategory of Comodf ⁄⁄C.

Proposition 2.  For any coalgebra  C,  the assignment C'jaAComodf ⁄⁄C' defines a bijection

between the subcoalgebras of  C  and the replete subcategories of Comodf ⁄⁄C.

Proof. We shall produce the inverse assignment. For any C-comodule  (V,⁄⁄a),  let  Im(V)  be
the image of the coalgebra morphism

~a : End(V) C .

So  Im(V,⁄⁄a)  is a subcoalgebra of  C.  For any replete subcategory  D Ã Comodf ⁄⁄C,  let  Im(D)
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be the sums of the subcoalgebras  Im(V,⁄⁄a)  as  (V,⁄⁄a)  runs over the objects of  D.  For any
subcoalgebra  C' Ã C,  we obviously have  Im(D) Ã C'  if and only if  D Ã Comodf ⁄⁄C'.  This
shows that

Im(Comodf ⁄⁄C') Ã C'     and     D Ã Comodf ⁄⁄(Im(D)).

To prove that  C' Ã Im(Comodf ⁄⁄C')  we can suppose that  C' = C.  Using Proposition 1, it will
be enough to show that every finite dimensional subcoalgebra  V  of  C  is contained i n
Im(Comodf ⁄⁄C).  Now the map

~
d : End(V) V

corresponding to  d : V aAV ƒ V  is surjective since
~
d (e ƒ v) = (e ƒ 1) d(v) = v .

This shows that  Im(V,⁄⁄a) = V  and hence  Im(Comodf ⁄⁄C) … V.  To prove that

Comodf ⁄⁄(Im(D)) Ã D,  we can suppose that  Im(D) = C.  Then our task is to prove that  D Ã
Comodf ⁄⁄C.  Let us first remark that, for any comodule  (V,⁄⁄a),  the subcoalgebra  Im(V,⁄⁄a)  is
generated by the images of the maps

V a V ƒ C f ƒ 1 C ,

where  f runs over  V*.  This is a direct consequence of the identity
~a (f ƒ x) = (f ƒ 1) a(x) .

If  V ŒD then the images of the maps  (f ⁄ƒ ⁄⁄1) a belong to  D since  D is replete. Therefore
Im(V,⁄⁄a) belongs to  D.  By hypothesis,  C  is generated by the  Im(V,⁄⁄a)  for  (V,⁄⁄a)ŒD.  This
shows that every finite dimensional submodule of  C  belongs to  D.  Let us prove that each
(W,⁄⁄b)ŒComodf ⁄C  belongs to  D.  If  f 1 , . . . , f n is a basis for  W * then the images  W i of the
maps

W
b

W ƒ C
f i ƒ 1

C

belong to  D since they are subcomodules of  C.  Combining the maps  W ⁄aAW i together,
we obtain a map from  W  into the direct sum of the  W i .  This map is easily seen to be
monomorphic. So  WŒD.qed

Suppose now that  C is a C-additive category and  U : C aAVectC is a C-additive
functor with values in finite dimensional spaces. In Section 4 we saw that the natural
transformation  g : U aaAU ƒ End⁄(U)  determines a lifting  

U~ :  C aaaA Comodf ⁄End⁄(U)

of  U  up into the category of  End⁄(U)-comodules.

Theorem 3. If  C is abelian and U  is exact and faithful then  U~ is an equivalence o f
categories.

Proof. Obviously  U~ is faithful. Before proving that  U~ is full, let us see that, for any

object  AŒC and any subcomodule  E Ã U~(A),  there exists a subobject  j :  B ÅAA  such
that  E = ImU(j).  Let  e1 , . . . , en be a basis for the vector space  U(A)  chosen in such a way

42



that  e1 , . . . , ek generate  E.  For any  x�ŒU(A),  the coaction  a : U(A) aAU(A)⁄ƒ ⁄End⁄(U)  is
given by the formula

a (x) = ei ƒ [e i
* ƒ

i = 1

n

Â x].

The hypothesis  a(E) Ã E⁄⁄ƒ ⁄End⁄(U)  means that, for all  i £ k  and  j > k,  we have 
[ e j ƒ* e i ] = 0 .

We can now apply Section 6 Corollary 3 since  End⁄(U) = U* ⁄ƒC⁄U  and both  U  and  U* are
exact ( C is both artinian and noetherian since  U  is faithful). This means that, for all  i £ k
and  j > k,  there is a subobject  Bi ⁄⁄j

gAA  such that  eiŒU(Bi ⁄⁄j⁄)  and  ej
*(U(Bi ⁄⁄j⁄)) = 0.  If we put

B i = B i j
j > k
« and B = B i

i £ k
»

then we have  eiŒU(B)  for every  i £ k,  and  ej
*(U(B)) = 0  for every  j > k.  This shows that

E �Ã U(B),  and  U(B) Ã E  since  
E = Ker (e j

*)
j > k
« .

To prove that  U~ is full, let  f : U~(A) aAU~(B)  be a morphism of comodules.

Then the graph  Gf of  f  is a subcomodule of  U~(A)⁄≈ ⁄U~(B) @ U~(A⁄≈ B) .  Therefore there
is a subcomodule  C Ã A ⁄⁄≈ B  whose image can be identified with  Gf .  We claim that  C  is
the graph of an arrow  u :  A aAB  whose image under  U  is  f.  To see this, let  i  be the
composite of the inclusion  C gAA ⁄≈ ¡¡⁄⁄B  and the first projection  p1 : A ⁄≈ B aAA. Then
U(i)  is the isomorphism  Gf Ã U(A)⁄≈ ⁄U(B) aAU(A).  Since  U  is exact and faithful, it
follows that  Ker(i) = Coker(i) = 0;  so  i  is an isomorphism. The arrow  u  is defined as the
composite

A i - 1
C Ã A ≈ B

p 2 B .

Obviously  U(u) = f  since  U  transforms this description of  u  into the description of  f.
To finish the proof, we have to show that every object of  Comodf ⁄End⁄(U)  is

isomorphic to a comodule in the image of  U~.  If we let  D be the full subcategory

consisting of the comodules isomorphic to those in the image of  U~,  we have to prove
that  D =  Comodf ⁄End⁄(U).  But we have seen that the image of  U~,  and therefore  D,  is
closed under subobjects. A similar argument shows that it is closed under quotients. Thus,
D is a replete subcategory, and, from Proposition 2, we have  D = Comodf ⁄C'  for some

subcoalgebra  C⁄' Ã End⁄⁄(U).  This implies that, for all  AŒC,  the vector space  U(A)  has the

structure of a C'-comodule g ⁄' A⁄⁄: U(A)⁄⁄aAU(A)⁄ƒ ⁄⁄C' which 'lifts' the coaction of  End⁄(U).
More precisely, we have the commutative triangle of natural transformations below.

U U ƒ C' 

U ƒ End (U) 
⁄

g

g⁄⁄⁄⁄'

U ƒ i

Using Section 4 Proposition 5, we have a unique coalgebra map
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~
g ' : End⁄(U) C'

such that the following triangle commutes. 

U U ƒ End (U) 

U ƒ C'

⁄

g⁄⁄⁄⁄'

g⁄⁄

U ƒ g⁄⁄⁄⁄'~

But then we have

i
~
g ' = id

by the uniqueness property of Section 4 Proposition 5. This proves that  i  is surjective, and
therefore  C' =  End⁄(U)  since  i  is an inclusion.qed

For any coalgebra  C,  the dual algebra  C* acts on the left of any (right) C-comodule.

For any  VŒComod⁄⁄(C), f ŒC* and  xŒC,  we write   f | x  for the action of  f on  x.  We have
 f | x  =  (1V ⁄⁄ƒ ⁄⁄f ⁄) aV ⁄⁄(x) .

Each element  f ŒC* defines a natural transformation     f | (  )  :  U ⁄aAU where  U :
Comod⁄⁄(C) aAVectC is the forgetful functor.

Proposition 4. For any coalgebra C,  the map f jA  f | (  )  is an isomorphism of algebras

C* ahA Hom(U , U ⁄⁄) .

Proof. Using the fact that any comodule is a direct colimit of finite dimensional comodules,
we can replace the category  Comod⁄⁄(C)  by its subcategory  Comodf ⁄⁄(C).  In this case, we have
defined a coalgebra isomorphism

~a : End⁄(U ) C .

This induces an isomorphism  C* ⁄ahAEnd⁄(U)*.  According to Section 4 Proposition 3,
any natural transformation  U aAU ⁄⁄ (= U ⁄⁄ƒ ⁄⁄C⁄⁄)  is of the form  (1ƒ ⁄⁄f ⁄)⁄⁄⁄g = f  | (  )  for a

unique  f ŒEnd⁄(U)*;  so the result follows.qed

§8. The bialgebra  End⁄⁄⁄⁄(X)  and tensor categories.

The tensor product  MƒN  of two modules over an algebra  A  is an AƒA-module,
but it is not in general an A-module. However, when  A  is a bialgebra, we can define an A-
module structure on  MƒN  by restricting the AƒA-module structure along the diagonal (=
comultiplication) map  d : AaAAƒA.  Similarly, the tensor product  MƒN  of two
comodules over a coalgebra  C  is a CƒC-comodule, and, when  C  is a bialgebra, we can
corestrict this comodule structure along the multiplication map  m : CƒC aAC  to obtain a
C-comodule structure on  MƒN. The category  Comod⁄⁄(C)  of comodules over a bialgebra  C
is therefore a tensor category (also called a monoidal category). The main purpose of this
section is to reverse this process: starting with a pair  (C, X)  consisting of a tensor category
C and a tensor-product-preserving functor  X : C aAVectf ,  we shall show that the

coalgebra  End⁄(X)  can be enriched with the structure of a bialgebra.

44



In what follows, we let  Vectf denote the category of finite dimensional vector spaces.

In Section 4 we saw how to construct a coalgebra  End⁄(X)  from a pair  (C, X)  where  C is a
category and  X : C aAVectf is a functor. It is easy to see in addition that a commutative
triangle of functors

C D

Vectf

X Y

F

gives rise to a map of coalgebras  End⁄(X) aaAEnd⁄(Y)  which we might call the
corestriction along  F  (it is predual to the usual restriction map  End(Y) aAEnd(X) ).
When the functor  F  is an equivalence of categories, the corestriction map along  F  is an
isomorphism of coalgebras. It is useful to formalise this process by introducing the category
Cat/Vectf of categories over  Vectf .  An object of  Cat/Vectf is a pair  (C, X)  where  C is a

(small) category and  X : C aAVectf is a functor. A morphism  (F,⁄⁄a) : (C, X) aA(D, Y)
consists of a functor  F : C aAD and a natural isomorphism  a : X hAYF.  Composition of
morphisms is the obvious one. We have a covariant functor

End⁄ :  Cat/Vectf
aaACoalg

with values in the category  Coalg  of coalgebras. We define the (external) tensor product of
X : C aAVectf with  Y : DaAVectf to be the functor

X ƒ Y  :  C ¥ DaAVectf

where,  for  (A,⁄⁄B)ŒC ¥ D,
(X ƒ Y)(A,⁄⁄B) = X(A) ƒ Y(B).

Proposition 1. There is a canonical isomorphism

q :  End⁄(X) ƒ End⁄(Y) ahAEnd⁄(X ƒ Y).

Proof. For any (A,⁄⁄B)⁄Œ⁄C ¥ D,  SŒEnd(X(A)), TŒEnd(Y(B)),  we have  SƒTŒEnd(X(A)ƒY(B)).
We put  q ⁄(⁄[S]⁄ƒ ⁄[T]⁄) = [⁄S ⁄ƒ ⁄T ⁄].  The best way to prove that ⁄⁄q ⁄⁄ is well defined and an
isomorphism is to see that it is a special case of the following canonical isomorphism
between tensor products of functors

(⁄H ƒC⁄⁄X⁄) ƒ (⁄K ƒD⁄⁄Y⁄)  ahA(⁄H ƒ K⁄) ƒC⁄¥⁄D (⁄X ƒ Y⁄)

where  H, K  are contravariant functors on ⁄C, D, respectively. When  H = X* and  K = Y*,

we have  H ƒC⁄⁄X⁄ = End⁄(X)  and  K ƒD⁄⁄Y = End⁄(Y). qed

Recall [ML] that a tensor (or "monoidal") category C = (C, ƒ, I, a , l, r) ⁄consists of a
category  C,  a functor  ƒ :  C ¥ C aA C (called the tensor product⁄⁄), an object  IŒC (called
the unit object⁄⁄) and natural isomorphisms

a = aA,B,C :  (A ƒ B) ƒ C ahAA ƒ (B ƒ C) ,
l = lA :  I ƒ A ahAA ,            r = rA :  A ƒ I ahAA

(called the associativity, left unit, right unit constraints, respectively), such that, for all
objects  A, B, C, D Œ C, the following two coherence conditions hold:
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aA,B,CƒD o a AƒB,C,D  =  (Aƒ ⁄aB,C,D⁄) o aA,BƒC,D o (aA,B,CƒD)    and      

(Aƒ ⁄⁄l⁄B ⁄) o aA,I,B =  rA⁄ƒ ⁄B.

It follows [ML] that all objects obtained by computing the tensor product of a sequence  A1
ƒ ⁄⁄A2 ⁄⁄ƒ . . . ƒ ⁄Am⁄ by bracketing it differently and by cancelling units are coherently
isomorphic to each other.

A tensor category is called strict when all the constraints  aA,B,C , lA , rA are identity
arrows. Each tensor category  C is equivalent to a strict tensor category  st(C ⁄).  The objects of
st(C ⁄)  are words  w = A1 A2 . . . Am in objects of  C.  An arrow  f : w aAw'  is an arrow  f : [w]
aA[w']  in  C where we define

[∆] = I,      [A] = A,     and 
[A1 A2 . . . Am⁄+1]  =  [A1 A2 . . . Am⁄]⁄⁄ƒ ⁄⁄Am⁄+1 .

The tensor  -ƒ for  st(C ⁄)  is given by  v -ƒ ⁄⁄w  =  vw  and by commutativity of the following
square f ƒ g             

[v] ƒ [w] aaaaaaA[v'] ƒ [w']

⁄⁄⁄⁄H ⁄⁄⁄⁄⁄⁄⁄⁄H
⁄⁄ ⁄⁄F ⁄⁄⁄⁄⁄⁄⁄⁄F

[vw]   aaaaaaaA [v'w']   .
f -ƒ g

An example of a tensor category is the category  Cat/Vectf with the external tensor
product described above. The unit object  I  in  Cat/Vectf is the functor  C :  1 aAVectf
where  1 is the category with a single object  * and a single arrow (the identity of  *) and  C
denotes the functor assigning to  * the one-dimensional vector space  CŒ Vectf .

Let  C, D denote tensor categories. Recall [ML] that a tensor (or "strong monoidal")
functor F = (F, f , f 0 ⁄) : C aAD consists of a functor  F : C aAD,  a natural isomorphism

f = f A,B :  FA ƒ FB  ahAF(A ƒ B),
and an isomorphism  f 0 : I hAF ⁄I⁄⁄,  such that the following three equations hold (where
we write as if  C, D were strict):

f AƒB,C o (f A,Bƒ ⁄FC) =  f A,BƒC o (FAƒ ⁄⁄f B,C⁄),   
f 0 ⁄ƒ ⁄FA  =  f I,A o F(f 0 ⁄ƒ ⁄A)      and      FAƒ ⁄f 0 = f A,I o F(Aƒ ⁄⁄f 0 ⁄) .

The tensor functor is strict when all the isomorphisms  f A,B , f 0 are identities. One
example of a tensor functor is the equivalence  C hAst(C ⁄)  taking  A  to  [A].  Another

example is the functor  End⁄ :  Cat/Vectf
aaACoalg .

Recall that a m o n o i d M = (M, m , h)  in a tensor category  C consists of an object  MŒC
and arrows ⁄⁄m : M⁄ƒ ⁄M aAM, h : I aAM ⁄⁄such that the following diagrams commute.

M⁄⁄ƒM⁄⁄ƒM M⁄⁄ƒM

M⁄⁄ƒM M

m⁄⁄ƒM

M⁄⁄ƒm m

m

M⁄⁄ƒM
m

M⁄⁄

M⁄⁄ M⁄⁄
h⁄⁄ƒM M⁄⁄ƒh

A c o m o n o i d is a monoid in ⁄C ⁄op.  For example, algebras are monoids in the category of
vector spaces, coalgebras are comonoids in the same category, and bialgebras are monoids
in the category of coalgebras. Monoids in  Cat (where the tensor product is cartesian
product) are strict tensor categories. Monoids in  Cat/Vectf are the pairs  (C,⁄⁄X)  for which  C
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is a strict tensor category and  X : C aAVectf is a tensor functor (not necessarily strict). It

follows from Proposition 1 that the coalgebra  End⁄⁄(X)  corresponding to such a pair has the
structure of a bialgebra since it enherits a monoid structure in the category of coalgebras.
More generally, if we have a pair  (C,⁄⁄X)  where  C is a tensor category, not necessarily strict,
and where  X  is a tensor functor, we also have a bialgebra structure on  End⁄(X).  To see
this, we can replace the pair  (C,⁄⁄X)  by a pair  (C ⁄' ,⁄⁄X')  where  C ⁄' = st(C ⁄)  is a strict tensor

category equivalent to  C.  We use the fact that the corestriction map  End⁄(X') aAEnd⁄⁄(X)
along an equivalence  C ⁄' aAC ⁄ is an isomorphism of coalgebras. However, we shall

directly describe the algebra structure on  End⁄⁄(X)  without recourse to  (C ⁄' ,⁄⁄X').  For any  A,
BŒC,  SŒEnd(X(A))  and  TŒEnd(X(B)),  let us write  S ⁄ƒ ⁄T  for the dashed arrow in the
square

X(A ƒ B) X(A ƒ B)

X(A) ƒ X(B) X(A) ƒ X(B)

H H

S ƒ T

Also, let us write  1ŒX(⁄I⁄)  for the element corresponding to 1ŒC under the isomorphism  C
@ X(⁄I⁄).  These notational abuses are harmless, not only because the context will dissipate

the ambiguity, but also because tensor functors satisfy a coherence theorem [Le]. We can
now specify the algebra structure on  End⁄⁄(X).  The product of the elements  [S]  and  [T]  of

End⁄⁄(X)  is given by the simple formula
[⁄S ⁄] [⁄T ⁄]  =  [⁄S ⁄ƒ ⁄T ⁄] .

The unit element of  End⁄⁄(X)  is equal to  [⁄1⁄] .
When  C = Rep⁄⁄(M,⁄⁄C⁄⁄)  and  X  is the forgetful functor  U ,  we obtain a bialgebra

structure on  End⁄⁄(U).  The meaning of the bialgebra structure is elucidated by the next
result.

Proposition 2. For any topological monoid M,  the Fourier cotransform
F⁄⁄⁄ :  End⁄⁄(U) aaAR(M)

is an isomorphism of bialgebras.

Proof. It remains to verify that  F⁄⁄⁄ is a homomorphism of algebras. For all  V, W Œ
Rep⁄⁄(M,⁄⁄C⁄⁄)  and all  AŒEnd(V), BŒEnd(W),  we have

F⁄⁄⁄ (⁄[⁄A ⁄] [⁄B ⁄]⁄)  =  F⁄⁄⁄ (⁄[⁄A ⁄ƒ ⁄B ⁄]⁄)  =  Tr (⁄pV ⁄ƒ⁄W⁄
o (A⁄ƒ ⁄B))  =  Tr ((pVƒ ⁄p ⁄W)⁄⁄o (A⁄ƒ ⁄B))

=  Tr (pVAƒ ⁄⁄p ⁄WB)  =  Tr (pVA) Tr (⁄p ⁄WB)  =  F⁄⁄⁄ (⁄[⁄A ⁄]⁄) F⁄⁄⁄ (⁄[⁄B ⁄]⁄)  and

F⁄⁄⁄ (⁄1⁄)  =  Tr (pI⁄)  =  1 . qed

The next thing we shall do is to characterize the algebra structure on End⁄⁄(X)  by a
universal property. More precisely, for all algebras  A,  we shall prove that the
correspondence  n jAñ  is a bijection between tensor-preserving natural transformations
X aAX ƒ A  and algebra homomorphisms  End⁄⁄(X) aAA.  Our first task is to define the
former. A coaction of the algebra  A  on a vector space  V  is a linear map  a : V aAV ⁄ƒ ⁄⁄A,
or equivalently, a linear map

~a : End(V) A .
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We define the trace of  a as the value of the last linear map at the identity endomorphism
of  V.  If  e1 , . . . , en is a basis of  V  and

a (e i) = e j ƒ
j = 1

n

Â a i j

then

Tr (a) = a i i
i = 1

n

Â .

We have the formula
~a (S) = Tr (a S)

which is valid for all  S Œ End(V).  The tensor product a ⁄⁄ƒ ⁄b of coactions  a : V aAV ⁄ƒ ⁄⁄A,
b : W aAW ⁄ƒ ⁄⁄A  is defined to be the composite

V ƒ W a ƒ b V ƒ A ƒ W ƒ A ~ V ƒ W ƒ A ƒ A V ƒ W ƒ m V ƒ W ƒ A

where ⁄m : A ⁄ƒ ⁄⁄A aAA is the multiplication of the algebra A, ⁄and the middle isomorphism
in the composite uses the symmetry map  A⁄ƒ ⁄⁄W hAW ⁄ƒ ⁄⁄A.  If

b(f r) = f s ƒ
s = 1

m

Â b r s

gives a matrix for  b then

(a ƒ b)(e i ƒ f r) = (e j ƒ fs
j , s = 1

n, m

Â ) ƒ (a i jb r s )

gives a matrix for  a ⁄⁄ƒ ⁄b .
We shall say that a natural transformation  u :  X aAX⁄⁄ƒ ⁄⁄A  is tensor preserving

when, for all  C, D Œ C,  we have
uC⁄⁄ƒ⁄⁄D =  uC ƒ ⁄⁄uD and   uI =  1 .

Let  C be a tensor category and  X : C aAVectf be a tensor functor. In Section 4

Proposition 3, we defined a natural transformation   g :  X aAX⁄⁄ƒ ⁄⁄End⁄⁄(X).

Proposition 3. The natural transformation  g is tensor preserving. Moreover, for all
algebras  A and all tensor-preserving natural transformations  n : X aAX⁄⁄ƒ ⁄⁄A,  there is

precisely one algebra homomorphism  ñ : End⁄⁄(X) aAA  such that the following triangle
commutes .

X X ƒ End (X) 

X ƒ A

⁄

n

g⁄⁄

Xƒ n~

Proof. To prove  g tensor preserving, take  C, DŒC.  Choose a basis  e1 , . . . , em of  X(C)  and
a basis  f1 , . . . , fn of  X(D).  By definition of  g C⁄⁄ƒ ⁄⁄g D ,  we have the equality

(gC ƒ gD ) (x ƒ y) = e i ƒ f j ƒ [e i ƒ* x][f i ƒ
*

y] .
i , j
Â

On the other hand, we have
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gC ƒ D (x ƒ y) = e i ƒ f j ƒ [e i ƒ* f i ƒ
*

x ƒ y] .
i , j
Â

The equality  g C⁄⁄ƒ ⁄⁄g D =  g C⁄ƒ⁄D is now a consequence of the identity

[⁄f ⁄ƒ ⁄x⁄] [⁄y ⁄ƒ ⁄⁄y⁄]  =  [⁄f ⁄ƒ ⁄⁄y ƒ ⁄⁄x⁄ƒ ⁄y⁄]
which holds in  End⁄⁄(X).  To prove the rest of the Proposition, let  n : X aAX⁄⁄ƒ ⁄⁄A  be a
tensor-preserving natural transformation. According to Section 4 Proposition 3, there exists
precisely one linear map  ñ : End⁄⁄(X) aAA  such that the triangle of the Proposition
commutes. A straightforward computation shows that we have  ñ ⁄(⁄[⁄S ⁄]⁄) = Tr⁄(nC⁄⁄S ⁄),  where
we are using the trace introduced above. Using this we have the following calculation:

~n ( [S] [T] ) = ~n ( [S ƒ T] ) = Tr (n C ƒ D(S ƒ T) ) = Tr ( n C ƒ n D ° (S ƒ T))

= Tr ( n C S ƒ n DT) = Tr ( n C S) Tr (n DT) = ~n ([S] ) ~n ([T] ) .qed

When  A  is a bialgebra, a coaction  a : V aAV ⁄ƒ ⁄A  defines a comodule structure  on
V  if and only if it is associative and unitary. Also, the tensor product of two coactions  a ⁄, b

is a comodule structure if both of  a ⁄, b are. The category  Comodf ⁄⁄(A)  of finite dimensional
comodules is a tensor category. Clearly, if a natural transformation  n : X aAX⁄⁄ƒ ⁄⁄A  is
tensor preserving and defines a comodule structure on  X  then we obtain a functor

X' = (X,⁄⁄n)  :  C aaA Comodf ⁄⁄(A)
which is tensor preserving and renders commutative the following triangle, where  U is
the forgetful functor.

Comod  ⁄(A⁄⁄)

U

Vect

C

X'

X
f

f

Proposition 4. Let  C be a tensor category and  X : C aAVectf be a tensor functor. For all

bialgebras A,  there is a bijection between tensor-preserving functors  X' : C aAComodf ⁄⁄(A)

such that  UX' = X  (i.e.  X'  lifts  X ) and bialgebra homomorphisms End⁄⁄(X) aAA.

Proof. Just combine Proposition 4 with Section 4 Proposition 7. qed

§9. Duality and Hopf algebras.

We begin by recalling the basic concepts of duality theory in a tensor category  C.
Given  A, BŒC,  we shall say that a pair of maps  h : I aAB ⁄ƒ ⁄A, e : AƒB aAI  form an
adjunction between  A  and  B  if the following two composites are identities:

A A ƒ h A ƒ B ƒ A e ƒ A A , B h ƒ B B ƒ A ƒ B B ƒ e B .
We call  h the unit and  e the counit of the adjunction. We say that  A  (respectively,  B ) is
left adjoint or left dual to  B  (respectively right adjoint or right dual to  A). We also write
(h, e ) : A J⁄⁄B  to indicate that the pair  (h, e )  is an adjunction between  A  and  B.
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The unit and counit of an adjunction determine each other. More precisely, let us
say that a map  e : AƒB aAI  ( a 'pairing') is exact when, for all objects  X, Y,  the function

e# :  C ⁄⁄(X,⁄⁄BƒY) aaA C ⁄⁄(AƒX,⁄⁄Y) ,         f  jaA(⁄e ƒ Y⁄) (Aƒ f⁄⁄) 
is bijective.

Proposition 1. A pairing e : AƒB aAI  is exact if and only if there exists a map  h : I aA

BƒA  such that the pair  (h, e )  is an adjunction between A  and B.

Proof. If  e is exact then take  h to be the unique map such that  e#(h)  is the canonical
isomorphism  AƒI hAA.  Conversely, if  (h, e)  is an adjunction then the function  h
jA(B⁄ƒ h ⁄) (⁄h ƒ X⁄)  is an inverse for  e#. qed

In the category of finite dimensional vector spaces, a pairing  e : V ƒW aAC is exact
if and only if the corresponding map  x jAe ⁄(x,⁄⁄–)  from  V  to  W ⁄* is an isomorphism.
When the pairing is exact, we can describe  h : C⁄⁄aAW ƒV  by giving the value
h(1)ŒW ƒV.  To any basis  e1 , . . . , en of  V  there corresponds a dual basis  f1 , . . . , fn of  W
such that  e ⁄(ei , fj⁄) = d i j .  We have

h ⁄(1)   =   f1 ⁄ƒ ⁄e1 +  .  .  .  +  fn⁄ƒ ⁄⁄en .

In a tensor category  C,  let  e : AƒB aAI  and  e' : A 'ƒB' aAI  be two exact pairings.
We shall say that a map  f : A aAA'  is left adjoint to  g : B' aAB  (or that  g  is right
adjoint to f ) when we have

e' (⁄f⁄⁄ƒ ⁄A)  =  e ⁄⁄(⁄B ⁄ƒ ⁄⁄g⁄⁄) .
For all  f,  there is a unique right adjoint  g  given by

g  =  (⁄h ' ƒ B ⁄) (B'⁄ƒ ⁄f⁄⁄ƒ ⁄B ⁄) (B'⁄ƒ ⁄⁄e ⁄) .
Similarly, for all  g,  there is a unique left adjoint  f  given by

f  =  (A'⁄ƒ ⁄⁄h ⁄) (A'⁄ƒ ⁄g⁄⁄ƒ ⁄A ⁄) (e' ƒ A ⁄) .
Applying this to the case where  A = A',  we see that two right adjoints  B, B'  of  A  are
canonically isomorphic. Similarly for left adjoints.

Definition. A tensor category  C is autonomous when every object of  C has both a left and
a right adjoint.

When  C is autonomous, we can choose, for each  CŒC,  a pair of adjunctions
(hC, e C⁄)  :  C⁄l J⁄ ⁄C      and      (h ' C, e ' C⁄)  :  C J⁄⁄ C⁄r .

We obtain in this way a pair of contravariant functors
(  )⁄l :  CopaaAC and      (  )⁄r :  CopaaAC .

Obviously, for all  CŒC,  we have canonical isomorphisms
(C⁄r ⁄)⁄l @ C   @ (C⁄l ⁄⁄)⁄r 

making the functors  (  )⁄l , (  )⁄r mutually quasi-inverse (i.e. they give an equivalence of
categories).

It is instructive to work out an example of an autonomous tensor category where
right and left adjoint are different. For any algebra  A,  let us write  Cof ⁄⁄(A)  for the category
whose objects are the coactions  a : V aAV ƒA  on finite dimensional vector spaces. In
Section 8 we defined a tensor product of coactions, and so this category becomes a tensor
category. We first identify the adjunctions within this category. Let  (V,⁄⁄a), (W,⁄⁄b)ŒCof ⁄⁄(A)
and let 

(h, e )  :  (V,⁄⁄a)  J ⁄⁄(W,⁄⁄b)

50



be an exact pairing. Clearly the pairing  (h, e)  defines an exact pairing between the vector
spaces  V  and  W  (since the forgetful functor  Cof ⁄⁄(A) aAVectf ⁄⁄ preserves tensor product).
Let  e1 , . . . , en be a basis of  V  and let  f1 , . . . , fn be a dual basis. We have

a (e i) = e j ƒ
j

Â a j i , b(f i ) = f j ƒ
j

Â b j i ,

e ( e i ƒ f j ) = d i j , h(1) = f i ƒ e i
i

Â .

Expressing that  e is a morphism in  Cof ⁄⁄(A),  we obtain

a k i
k

Â b k j = d i j .

Similarly, expressing that  h is a morphism, we obtain

b i k
k

Â a j k = d i j .

If  a = (a ⁄i ⁄⁄j⁄)  and  b = (b ⁄i ⁄⁄j⁄),  these equalities can be formulated as the matrix equations  (t⁄a)⁄⁄b

=  b (t⁄a)  =  id .  In other words, the right adjoint a ⁄r of the matrix  a is equal to  (⁄t⁄a ⁄)- 1.

Similarly, we obtain that the left adjoint  a ⁄l of  a is the matrix  t⁄⁄(a- 1⁄).  If the algebra  A  is

not commutative, there is in general no relationship between  t⁄⁄(a- 1⁄)  and  (⁄t⁄a ⁄)- 1.  One
might exist and not the other. We can inductively define

a(0) =  a ,        a(n+1) =  (a(n)⁄⁄)⁄l for  n ≥ 0 ,       and       a(n-1) =  (a(n)⁄⁄)⁄r for  n £ 0.
Let us say that a matrix  a is totally invertible when  a(n) exists for all  nŒZ .  Clearly the
coactions with totally invertible matrices form an example of an autonomous category for
which left and right duals do not coincide in general.

We now give a brief review of the basic theory of Hopf algebras. Recall that, for any
coalgebra  C  and any algebra  A,  the convolution product defines an algebra structure on
the vector space  Hom(C,⁄⁄A),  where the convolution  f ⁄⁄*⁄⁄y of  f : C aAA  with ⁄y : C
aAA is the composite

C d C ƒ C f ƒ y A ƒ A m A .
The unit of  Hom(C,⁄⁄A)  is the composite

C e C
h

A
where  h ⁄(l) = l.1 .  If  f : C' aAC  is a morphism of coalgebras and  g : A aAA'  is a
morphism of algebras then the assignment  f jAg⁄⁄f ⁄⁄f  is a morphism of algebras

Hom(C,⁄⁄A) aaAHom(C',⁄⁄A').
When  C = A = H  is a bialgebra, we obtain an algebra structure on  Hom(H,⁄⁄H).  A n
antipode n on a bialgebra  H  is a two-sided inverse for the identity map  1H : H aAH
with respect to the convolution product. More explicitly, this means that the following two
diagrams commute.

H ƒ H H ƒ H

C

H H
d

n⁄⁄ƒ⁄⁄1 m

e h

H ƒ H H ƒ H

C

H H
d

1⁄⁄ƒ⁄⁄n m

e h

An antipode, when it exists, is unique. A bialgebra with an antipode is a Hopf algebra. 
The translation of all the axioms on a bialgebra into pictorial notation [⁄⁄JS2⁄] leads to

the following diagrams.
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m

m
=

m

m

,

m

h

•
•

•
• •

•
= =

m

h•
•

d

d =
d

d

,
d

e

•
•

•
• •

•
= =

d

e •
•

•m

d =

d

m•
•
• •m

d •
c

,

m

e•
•

=
e e••

h

d = h h

,
h

e• •
•
• •

•
=

Now we add to these the two axioms for an antipode  n .

m

d

=

•

•
•

•
•

h

e

=
m

d

•
•n

•
n

Proposition 2. In any Hopf algebra H,  the antipode n : H aAH  is an anti-endo-morphism
of the algebra structure and of the coalgebra structure.

Proof. We will compute the convolution inverse of the multiplication  m : HƒH aAH  i n
the algebra  Hom(HƒH,⁄⁄H⁄).  First, the map  f jAf ⁄m is an algebra morphism

Hom(H,⁄⁄H⁄) aaAHom(HƒH,⁄⁄H⁄)
since  m : HƒH aAH  is a coalgebra morphism. This proves that  n m is the convolution
inverse of  1H m = m .  Secondly, we shall verify, by a direct pictorial computation, that the
map  

m ' = (H ƒ H c H ƒ H n ƒ n H ƒ H
m

H )
is a convolution inverse to  m .  The diagram for  m ⁄'  is as follows.
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m•
•n•n

Starting with the diagram which expresses the product  m ⁄' ⁄*⁄m ,  we obtain the following
sequence of diagrams having the same value:

m •
•n•n

•

•

m

m

d d• •

=

m •
•n•n

•

•

m

m

d

d

•

•

=

m
•

•n•n

•

•

m
m

d

d

•

•

=
•
••

• •

•
m

m

hn

e d

= •

• •

•m

n

e d

=

• •

•h

e e

The last picture is the unit of the algebra  Hom(HƒH,⁄⁄H⁄),  so we have proved that  m ⁄'  is the
convolution inverse of  m .  By uniqueness of convolution inverse, we obtain  n m = m ⁄' ,
which means that  n is an anti-endomorphism of the algebra structure of  H.  Using a
similar argument (invert the diagrams and replace e, m by  h, d ), we obtain that  n is an
anti-endomorphism of the coalgebra structure. qed

Now consider the bialgebra  H' = (H, d , m ⁄')  obtained by reversing the multiplication
m ;  that is,  m ⁄'(x⁄ƒ ⁄y) = m ⁄(y⁄ƒ ⁄⁄x) .

Proposition 3. For any Hopf algebra H,  an antipode n ⁄⁄'  exists for  H'  if and only if t h e
antipode n o f H  is bijective. In this case, n ⁄⁄' = n ⁄⁄-1.

Proof. If  n is bijective, composition with  n ⁄⁄-1 defines an algebra morphism  Hom(H,⁄⁄H)
aAHom(H,⁄⁄H')  since  n ⁄⁄-1 : H aAH'  is an algebra morphism. Therefore  1H = n ⁄⁄-1 n ⁄⁄ and
n ⁄⁄-1 = n ⁄⁄-1 1H are mutually inverse in  Hom(H,⁄⁄H').  This shows that  n ⁄⁄-1 is an antipode for
H'.  Conversely, if  n ⁄⁄'  exists, composition with  n ⁄⁄'  gives an algebra morphism  Hom(H,⁄⁄H)
aAHom(H,⁄⁄H'),  and therefore  n ⁄⁄' = n ⁄⁄' 1H and  n ⁄⁄' ⁄n ⁄ are mutually inverse in  Hom(H,⁄⁄H').
By uniqueness of inverses,  n ⁄⁄' ⁄n = 1H .  A similar argument gives  n ⁄⁄⁄n ⁄⁄' = 1H which proves
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the result. qed

Recall that the category  Comodf ⁄⁄(H)  of finite dimensional (right) comodules over a
bialgebra  H  is a tensor category.

Proposition 4. Let H  be a bialgebra. Then H has an antipode if and only if every finite
dimensional (right) H-comodule has a left dual.

Proof. Let  a : V aAV ƒH  be a finite dimensional comodule. If  e1 , . . . , en is a basis of  V
then we have

a (e i) = e i ƒ
j = 1

n

Â a j i , d(a i j ) = a i k ƒ
k = 1

n

Â a k j , e(a i j ) = d i j .

It follows that

n(a i k)
k = 1

n

Â a k j = m( n ƒ 1H ) d(a i j) = m(e( a i j) ) = d i j ,

and similarly that

a i k
k = 1

n

Â n(a k j) = d i j .

Hence  a = (a ⁄i ⁄⁄j⁄⁄)  is an invertible matrix. If we put b =  (b ⁄i ⁄⁄j⁄⁄)  =  (n ⁄⁄⁄a ⁄j⁄⁄i ⁄⁄)  =  t⁄⁄(a- 1⁄)   then we

have a coaction  b : V* aA V * ⁄ƒ ⁄H  defined as

b(e i
*) = e i ƒ

*

j = 1

n

Â b j i .

We have seen earlier in this Section that such a coaction is left dual to  a in the category
Cof ⁄⁄(H).  It remains to see that  b provides a comodule structure. But we have

d b ⁄i ⁄⁄j =  d n a ⁄j⁄⁄i =  c (n ⁄⁄ƒ ⁄⁄n) d a ⁄j⁄⁄i =  c Sk n (a ⁄j⁄⁄k⁄)⁄⁄ƒ ⁄⁄n (a ⁄k⁄⁄i ⁄)  

= Sk n (a ⁄k⁄⁄i ⁄)⁄⁄ƒ ⁄⁄n (a ⁄j⁄⁄k⁄)  =  Sk b ⁄i ⁄⁄k⁄⁄⁄ƒ ⁄⁄b ⁄k⁄⁄j⁄ ,
e b ⁄i ⁄⁄j =   e n a ⁄j⁄⁄i =   e a ⁄j⁄⁄i =   d ⁄j⁄⁄i =   d ⁄i ⁄⁄j .

The rest of this Proposition follows from the next Proposition 5. qed

Proposition 5. Let  C be a tensor category and  X : C aAVectf be a tensor functor. If every

object of  C has a left dual then the coalgebra End⁄(X)  has an antipode.

Proof. For all objects  CŒC,  we have an exact pairing  e : ⁄⁄C⁄l ⁄⁄ƒ ⁄⁄C aAI .  The vector space

X(C⁄l)  is then a dual  X(C)* of  X(C),  since tensor functors preserve dual pairs. Therefore,
for all  AŒEnd(X(C)),  there is a transposed endomorphism  tAŒEnd(X(C⁄l)).  Let us put

n ( [A]⁄)  =  [⁄tA ⁄] .

Then  n is easily seen to be a well defined linear endomorphism of  End⁄(X).  It remains to
prove that  n is an antipode. Let  e1 , . . . , en be a basis of  X(C)  and let  e1

* , . . . , en
* be the

dual basis of  X(C⁄l ⁄)  (the pairing is  X(e) ). Then, for all  f Œ X(C⁄l⁄)  and  xŒX(C),  we have

d [f ⁄⁄ƒ ⁄⁄x⁄]  =  Si [⁄f ⁄⁄ƒ ⁄⁄ei ⁄⁄]⁄ƒ ⁄ [⁄ei
* ⁄⁄ƒ ⁄⁄x⁄]    and    n [f ⁄⁄ƒ ⁄⁄x⁄] = [x⁄⁄ƒ ⁄⁄f ⁄] .

So that we have

m (n ⁄⁄ƒ ⁄⁄1⁄) d [f ⁄⁄ƒ ⁄⁄x⁄]  =  Si [⁄ei ⁄⁄ƒ ⁄⁄f ⁄⁄]⁄⁄ [⁄ei
* ⁄⁄ƒ ⁄⁄x⁄]  =  Si [⁄(ei ⁄⁄ƒ ⁄⁄⁄ei

* ⁄⁄) ƒ ⁄ (⁄f ⁄⁄ƒ ⁄⁄x⁄)]  =  [ t⁄⁄ƒ ⁄ (⁄f ⁄⁄ƒ ⁄⁄x⁄)]
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where  t  =  Si ei ⁄⁄ƒ ⁄⁄⁄ei
* ⁄⁄ is the linear form  X(e)  on the space  X(C⁄l)⁄ƒ ⁄X(C⁄)  (so that  t  is also

just the trace map on  X(C)* ⁄ƒ ⁄X(C) ). If  1 : CaAC denotes the identity form, we have
[ t⁄⁄ƒ ⁄ (⁄f ⁄⁄ƒ ⁄⁄x⁄)]  =  [ 1 X(e)⁄⁄ƒ ⁄ (⁄f ⁄⁄ƒ ⁄⁄x⁄)]  =  [⁄1ƒ X(e)⁄⁄(⁄f ⁄⁄ƒ ⁄⁄x⁄)]  =  [f (x)]  =  h0 ⁄e0 ⁄([f ⁄⁄ƒ ⁄⁄x⁄])

where  h0 ⁄,  e0 here denote the unit and counit of  H. qed

Definition. A Hopf algebra is  autonomous when the antipode is a bijective map.

Proposition 6. Let H  be a bialgebra. The category  Comodf ⁄⁄(H)  is autonomous if and only i f
H is an autonomous Hopf algebra.

Proof. Let  H'  be the bialgebra obtained by reversing the multiplication of  H.  Let
Comodf ⁄⁄(H)'  be the tensor category obtained by reversing the tensor product on  Comodf ⁄⁄(H),
so that  V ƒ 'W  =  W ƒV.  Then the map  c  given by  c⁄(⁄x⁄⁄ƒ ⁄⁄y⁄)  =  ⁄y⁄⁄ƒ ⁄⁄x  is an isomorphism
between  V ƒ 'W  and  V ƒW  computed as H'-comodules. This shows that we have a
canonical isomorphism of tensor categories between  Comodf ⁄⁄(H')  and  Comodf ⁄⁄(H)'.  A right

dual in  Comodf ⁄⁄(H)  is a left dual in  Comodf ⁄⁄(H)'.  The result now follows from Propositions
3, 4, 5. qed

§10. Braidings and Yang-Baxter operators.

Recall [⁄JS1] that a braiding for a tensor category  V consists of a natural family of
isomorphisms

c = cA⁄,⁄B :  A⁄⁄ƒ ⁄⁄B ahA B ⁄⁄ƒ ⁄⁄A

in  V such that the following two diagrams commute (where the unnamed arrows are
associativity constraints).

(BƒA)ƒC Bƒ(AƒC)

(AƒB)ƒC Bƒ(CƒA)

Aƒ(BƒC) (BƒC)ƒA

cƒC Bƒc

c

~

~ ~

Aƒ(CƒB) (AƒC)ƒB

Aƒ(BƒC) (CƒA)ƒB

(AƒB)ƒC Cƒ(AƒB)

Aƒc cƒB

c

~

~ ~

It follows from these axioms that  cA⁄,⁄I :  A ⁄⁄ƒ ⁄⁄I ahA I⁄⁄ƒ ⁄⁄A  is equal to the canonical
isomorphism  A⁄⁄ƒ ⁄⁄I ahA A ahA I⁄⁄ƒ ⁄⁄A .  Similarly for  cI⁄,⁄A :  I⁄⁄ƒ ⁄A ahA A ⁄⁄ƒ ⁄⁄I.

If  c  is a braiding then so is  c'  given by c'A⁄,⁄B =  (cB ⁄,⁄A⁄⁄)⁄-1 .  A symmetry is a braiding
for which  c = c'.

A braided tensor category is a pair  (V,⁄⁄c)  consisting of a tensor category  V and a
braiding  c.

Example 1. Let  B⁄n be the Artin braid group. A presentation for  B⁄n is given by the
generators  s1 , . . . , sn-1 and the relations

(A1) si si+1 si =  si+1 si si+1 for  1 £ i £ n-2,
(A2) si sj =  sj si for  1 £ i < j-1 £ n-2.

The braid category B is the disjoint union of the  B⁄n.  More explicitly, the objects of  B are
the natural numbers  0, 1, 2, . . . ,  the homsets are given by
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B(m, n) =
B n when m = n
∆ otherwise ,

Ï
ÌÓ

and composition is the multiplication of the braid groups. The category  B is equipped with
a strict tensor structure defined by addition of braids

≈ :  B⁄m ¥ ⁄B⁄n 
aaaA B⁄m+n

which is algebraically described by
si ≈  sj =  si sm+j .

A braiding for  B is given by the elements
c = cm⁄,⁄n :  m⁄⁄+ ⁄⁄n aaA n ⁄⁄+ ⁄⁄m

illustrated by the following figure.
mn

m n

Theorem 1 [⁄⁄JS1⁄].  B is the free braided strict tensor category on one generating object.

Example 2 [⁄FY1⁄]. Let  G  be an arbitrary fixed (discrete) group. A crossed G-set is a G-set
together with a function

˙ ˙  :  X aaAG
satisfying the condition  ˙ g x˙ =  g ˙ x˙ g–1.  A m o r p h i s m f : X aAY  of crossed G-sets is a
function satisfying  f (⁄g x⁄⁄)  =  g f (⁄x⁄⁄)  and  ˙ ⁄⁄f (x)˙ = ˙ x˙ . We have a category  Cr⁄⁄(G)  of
crossed G-sets. This becomes a tensor category on taking the tensor product of crossed G-sets
X, Y  to be their cartesian product together with  ˙ ⁄⁄(x, y⁄)˙ = ˙ ⁄⁄x˙˙ y˙ .  A braiding c = cX⁄,⁄Y :
X⁄⁄ƒ ⁄⁄Y ahA Y⁄⁄ƒ ⁄⁄X  for the tensor category  Cr⁄⁄(G)  is given by

c (x, y⁄)  =  (˙ ⁄⁄x˙ y⁄, x⁄) .

Example 3. Let  R  be a commutative ring. The category  ZMod⁄⁄(R)  of Z-graded R-modules
has a well-known tensor product:

(A ƒ B) n = A p ƒ
R

B q
p + q = n

Â .

For any invertible element  kŒR,  we can define a braiding via the formula
c (x ƒ y⁄⁄)  =  kpq ⁄⁄y ƒ x

for  xŒAp and  yŒBq .  When  k = –1  we get the usual (anti-)symmetry on graded modules.

Example 4.⁄⁄The character group of the circle group ⁄T = U(1) ⁄is isomorphic to Z⁄⁄. ⁄⁄This shows
that any representation⁄⁄⁄⁄V ŒRep⁄⁄(⁄T⁄⁄,⁄⁄C⁄⁄) ⁄⁄splits as a direct sum of isotypical components

V = Vk
k Œ Z

Â

where the action of  zŒT on  xŒV k is equal to  zk⁄⁄x .  The tensor category  Rep⁄⁄(⁄T⁄⁄,⁄⁄C⁄⁄)  is
actually isomorphic to the category of Z-graded C-modules. This shows that, for any non-
zero complex number  kŒC,  we can define a braiding on  Rep⁄⁄(T,⁄⁄C⁄⁄)  via the formula in the
previous example.

Example 5. The centre of the unitary group  U(n)  is a one-dimensional torus  T =  { zI :
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zŒU(1) }. If we restrict to  T the action of  U(n)  on  VŒ Rep⁄⁄(U(n),⁄⁄C⁄⁄),  we obtain a splitting

V = Vk
k Œ Z

Â
where the  V k are stable under the action of  U(n)  since  T is in the centre of  U(n).  This
shows that we can transfer the braiding of Example 4 to the category  Rep⁄⁄(⁄U(n)⁄⁄,⁄⁄C⁄⁄).

Example 6. The centre of the group  SU(n)  is the group  m n Ã ⁄P of n-th roots of unity. The

dual group  m n
⁄ is isomorphic to  Z⁄⁄/n .  For any  VŒRep⁄⁄(⁄SU(n)⁄⁄,⁄⁄C⁄⁄),  we obtain a splitting

V = Vk
k Œ Z/n

Â .

If  kŒC is an n-th root of unity, there is a braiding defined by
c (x ƒ y⁄⁄)  =  kpq ⁄⁄y ƒ x

where  p, qŒ Z⁄⁄/n  are the degrees of  x  and  y.  When  n = 2,  the braiding is a symmetry. If
we choose  k = –1,  the odd degree representations behave differently from the even ones
under permutation symmetry. In theoretical physics, this is the mathematical structure
which distinguishes fermions (odd representations) from bosons (even representations).
When  n = 3, we obtain a three-fold classification of the irreducible representations of
SU(3).  If  k  is a primitive cubic root of unity, the braiding is not a symmetry and the braid
group takes the place of the symmetric group as acting on tensor powers of  V ƒn.  In this
case however, the operator  

c = cV,⁄V :  V⁄⁄ƒ ⁄⁄V ahA V ⁄⁄ƒ ⁄⁄V
satisfies the quadratic equation

c 2 +  c  +  1  =  0 ,
so that we are not too far away from the symmetric case (characterized by the equation  c 2

=  1 ).  The group  SU(3)  is the one used by theoretical physicists for the theory of quarks. Is
there any physical significance to the above braiding?

Example 7. Example 3 can be generalized as follows. For any abelian group  A,  let
AMod⁄⁄(R)  be the category of A-graded R-modules. Let  k : A ¥ A aAR¥ be a pairing of the

(additive) group  A  into the (multiplicative) group  R¥ of invertible elements of  R.  W e
can define a braiding via the formula

c (x ƒ y⁄⁄)  =  k⁄(p,⁄⁄q⁄) ⁄⁄y ƒ x
where  x, y  are homogeneous of degree  p, q,  respectively.

Example 8. Examples 4, 5 and 6 can be generalized by taking a compact group whose centre
contains the dual group  A⁄ and where the pairing is  k : A ¥ A aAC⁄⁄¥ .

Example 9. For any bialgebra  A,  the category  Mod⁄⁄(A)  of (left) A-modules is a tensor
category. A braiding ⁄⁄c ⁄⁄on ⁄⁄Mod⁄⁄(A)⁄⁄ is completely determined by the element  g = cA,⁄A(1⁄ƒ ⁄⁄1).
To see this, let  M, N  be two A-modules. For any  xŒM, yŒN,  we have the commutative
square below, in which  x : A aAM,  y : A aAN  send  1ŒA  to  xŒM, yŒN, respectively.
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AƒA AƒA

M⁄⁄ƒ⁄⁄N N⁄⁄ƒ⁄⁄M

c

xƒy yƒx

M⁄⁄ƒ⁄⁄N

A⁄⁄ƒ⁄⁄A

c

This proves that
cM,⁄N⁄(x⁄ƒ ⁄⁄y)  =  g (y⁄ƒ ⁄⁄x)

where the right-hand AƒA-module structure on  NƒM  is used. Of course, this element
g ŒAƒA  must satisfy certain conditions. The first is that the assignment  x⁄ƒ ⁄⁄y jAg (y⁄ƒ ⁄⁄x)
should be A-linear. To express this condition, let us use the notation  x⁄i ⁄⁄j⁄⁄k⁄⁄.⁄⁄.⁄⁄. for the image
of  x under the usual canonical isomorphism

s ⁄i ⁄⁄j⁄⁄k⁄⁄.⁄⁄.⁄⁄. :   M⁄1 ƒ M ⁄2 ƒ M ⁄3 ƒ. . .  ahA M ⁄i ƒ M ⁄j ƒ M ⁄k ƒ. . .
induced by the permutation  1 2 3 . . .  jA i j k . . .  .  The formula for the braiding is then

c⁄⁄⁄(x⁄ƒ ⁄⁄y)  =  g . (x⁄ƒ ⁄⁄y)21 .
The A-linearity of  c  then amounts to the equation

g . ( d ⁄(a) . (x⁄ƒ ⁄⁄y) )21 =  d ⁄(a) . g . (x⁄ƒ ⁄⁄y)21 .
This equation is valid for all  aŒA  and all  x, y  if and only if, for all  aŒA,

g . d ⁄(a)21 =  d ⁄(a) . g .

The reader might enjoy proving the following result: the braidings on  Mod⁄⁄(A)  are i n
bijection with the invertible elements  g ŒAƒA  which satisfy the two equations below i n
addition to the one above.

⁄(d ⁄⁄ƒ ⁄⁄1A⁄)(g )   =   ⁄(1ƒ ⁄⁄g ⁄) . (g ⁄⁄ƒ ⁄⁄1)1 ⁄3 ⁄2 ,      (1Aƒ ⁄⁄d ⁄)⁄(g )   =   ⁄(g ⁄⁄ƒ ⁄⁄1) . (1ƒ ⁄⁄g ⁄)2 ⁄1 ⁄3 .
These equations can be written more elegantly as

(d ⁄⁄ƒ ⁄⁄1A⁄)⁄(g )   =   s2 ⁄3 ⁄(⁄g ⁄)⁄⁄ s1 ⁄3 ⁄(⁄g ⁄) ,      (d ⁄⁄ƒ ⁄⁄1A⁄)(1Aƒ ⁄⁄d ⁄)⁄(g )   =   s1 ⁄2 ⁄(⁄g ⁄)⁄⁄ s1 ⁄3 ⁄(⁄g ⁄)
where we are using the insertion operators  si ⁄j :  AƒA aAAƒAƒA  defined by

s1 ⁄2 ⁄(x⁄ƒ ⁄⁄y)  =  x⁄ƒ ⁄⁄y⁄ƒ ⁄⁄1 ,    s2 ⁄3 ⁄(x⁄ƒ ⁄⁄y)  =  1⁄ƒ ⁄⁄x⁄ƒ ⁄⁄y ,    s1 ⁄3 ⁄(x⁄ƒ ⁄⁄y)  =  x⁄ƒ ⁄⁄1⁄ƒ ⁄⁄y .
Translated into diagrammatic notation, the three equations for  g are as follows, where we
put  m ⁄⁄'(x⁄ƒ ⁄⁄y) = y⁄ƒ ⁄⁄x  and  d ⁄⁄' =  d 2 ⁄1 .

• g

m• •m

d • • d '

m• •m

g •
=

•

• •
•

•

•

•

•
•g

•

==
,

m m'
d d

g g

g

g g

To accommodate our next example, we need the following result which holds for
any coalgebra  C.  Let  n ≥ 1  be an integer and let  f Œ(C⁄ƒn⁄⁄)* be a linear form. For any n-
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sequence  (⁄V 1 , . . . , Vn⁄⁄)  of C-comodules, we can define an operator
 f  | :  V1 ƒ . . . ƒ V n

aaAV 1 ƒ . . . ƒ V n
by using the fact that  V 1 ƒ . . . ƒ V n is a comodule over the coalgebra  C ƒ C ƒ . . . ƒ C =

C⁄ƒn.  More precisely, for all  x1ŒV 1 , . . . , xnŒV n ,  we have
 f  | (x1 ⁄⁄ƒ ⁄⁄ . . . ƒ ⁄⁄xn⁄⁄)  =  (⁄1⁄⁄ƒ f ⁄⁄) ⁄⁄a ⁄(x1 ⁄⁄ƒ ⁄⁄ . . . ƒ ⁄⁄xn⁄⁄)

where we have used the C⁄ƒn–comodule structure

a :  V1 ƒ . . . ƒ V n
aaA(⁄⁄V 1 ƒ . . . ƒ V n⁄⁄) ƒ C⁄ƒn.

If  Uƒn :  Comod⁄⁄(C⁄)naaAVectC denotes the functor 
(⁄V 1 , . . . , Vn⁄⁄) jaAV 1 ƒ . . . ƒ V n

then we have defined a natural transformation
 f  | (  )  :  Uƒn aaA Uƒn .

Proposition 2. The assignment  f jA  f  | (  ) is an algebra isomorphism

(C⁄ƒn⁄⁄)* ahA Hom(⁄⁄Uƒn, Uƒn ) .

Proof.  This is a consequence of Section 7 Proposition 4  and Section 8 Proposition 1. qed

For any bialgebra  A,  the category  Comod⁄⁄(A⁄)  of (right) comodules is a tensor
category. If  c  is a braiding on  Comod⁄⁄(A⁄),  we obtain a linear form

g = (A ƒ A
c A , A A ƒ A e ƒ e C) .

To state the next Proposition we shall use the insertion operators  si ⁄j : (AƒA)*

aA(AƒAƒA)* defined by
s1 ⁄2 =  t⁄(A⁄ƒ ⁄⁄Aƒ ⁄⁄e) ,    s2 ⁄3 =  t⁄(e ⁄ƒ ⁄⁄A ⁄⁄ƒ ⁄⁄A) ,    s1 ⁄3 ⁄ =  t⁄(A⁄ƒ ⁄⁄e ⁄⁄ƒ ⁄⁄A) .

Proposition 3. The assignment c jAg described above is a bijection between braidings c

o n Comod⁄⁄(A⁄) and linear f o rms g Œ(AƒA)* which are invertible for the convolut ion
product *  and satisfy the following identities:

m ⁄⁄' ⁄⁄* g =  g * m ,     g ⁄⁄(1A⁄⁄ƒ ⁄⁄⁄m ⁄⁄)  =  s1 ⁄3 ⁄(⁄g ⁄) * s1 ⁄2 ⁄(⁄g ⁄) ,   g ⁄⁄(⁄m ⁄ƒ ⁄⁄1A⁄)  =  s1 ⁄3 ⁄(⁄g ⁄) * s2 ⁄3 ⁄(⁄g ⁄) .

Proof (Sketch). The braiding is obtained from  g by the formula
c (x ƒ y⁄⁄)  =  ⁄(   g  | x ƒ y⁄⁄)2 ⁄1 =     g 21 | y ƒ x  .

The situation is then entirely dual to that of Example 9. We can obtain these equations by
rotating the pictures in that Example through 180°. qed

The second and third equations of the above Proposition 3 can also be written:

g ( x, y z) = g
i

Â (x i
, , z ) g (x i

, , , y ) , g (y z , x) = g
i

Â (y , x i
, ) g (z , x i

, ,) where d(x) = xi ƒ
, x i

, ,

i
Â .

Recall [⁄J,⁄⁄D] that a Yang-Baxter operator on a vector space  V  is a linear isomorphism
R  :  V ƒ V ahA V ƒ V

such that the following hexagon commutes.
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V ƒ V ƒ V

V ƒ V ƒ V V ƒ V ƒ V

V ƒ V ƒ V

V ƒ V ƒ V V ƒ V ƒ V

R ƒ 1

R ƒ 1 R ƒ 1

1 ƒ R 1 ƒ R

1 ƒ R

The equation

(Rƒ1) (1ƒR) (Rƒ1)  =   (1ƒR) (Rƒ1) (1ƒR)

is called the Yang-Baxter equation. The translation into pictures is:

= •
 •

•

•
•

•R

R
R

R

R

R

The rule of the game is to replace (whenever possible) these planar string diagrams by 3-
dimensional ones in which crossings replace the nodes labelled by  R  or  R–1 , as indicated
in the following picture. The Yang-Baxter equation is then depicted as the equality shown
after that.

R R
–1

, .

jaA jaA

=

An example of a Yang-Baxter operator [⁄J, T, JS3⁄]  is the following.  Let  e1 , . . . , en be a
basis for  V, ⁄⁄and let ⁄⁄qŒC ⁄⁄be a non-zero complex number. We define  R = Rq ⁄: ⁄V ⁄⁄ƒ ⁄⁄V
hAV ⁄⁄ƒ ⁄⁄V as follows:

R(e i ƒ e j ) =

e j ƒ e i for i > j

e j ƒ e i + (q - q - 1)e i ƒ e j for i < j

q e i ƒ e i for i = j .

Ï
Ô
Ì
Ô
Ó
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The operator  R  satisfies the equation

(⁄⁄R – q⁄⁄)  (⁄⁄R + q–1⁄⁄)  =  0.

Moreover, the inverse of  R  is given by

R
- 1

(e i ƒ e j ) =

e j ƒ e i for i < j

e j ƒ e i + (q - 1 - q) e i ƒ e j for i > j

q - 1 e i ƒ ei for i = j .

Ï
Ô
Ì
Ô
Ó

One can check directly that this  R  is a Yang-Baxter operator.

Given any Yang-Baxter operator  R  on  V,  we can define, for every  n ≥ 0,  a

representation  pR of the braid group  Bn in the general linear group  GL⁄(⁄V ⁄ƒn⁄⁄)  by putting

p R ( s i ) = 1ƒ . . . ƒ 1

i - 1

ƒ R ƒ 1 ƒ . . . ƒ 1

for each generator  si of  Bn .  Putting together these representations, we obtain a tensor
functor

pR :  B aaA VectC .

Proposition 4. The correspondence R jA pR is a bijection between the Yang-Baxter

operators o n V  and the (isomorphism classes of) tensor functors p :  B aA VectC such
that  p (1) = V.

More generally, let ⁄⁄T : A aAV⁄⁄ be a functor from a category ⁄⁄A ⁄⁄to a tensor category⁄⁄ V.

Definition [⁄JS3⁄]. A Yang-Baxter operator on  T  is a natural family of isomorphisms

y =  yA,⁄⁄B :   TA ƒ TB ahA TB ƒ TA

such that the following hexagon commutes.

TA ƒ TB ƒ TC

TA ƒ TC ƒ TB TC ƒ TA ƒ TB

TC ƒ TB ƒ TA

TB ƒ TA ƒ TC TB ƒ TC ƒ TA

y ƒ 1

y ƒ 1 y ƒ 1

1 ƒ y 1 ƒ y

1 ƒ y

Any functor  T : A aAV into a braided tensor category  V comes equipped with a
Yang-Baxter operator obtained from the braiding of  V :

yA,⁄⁄B =  c⁄⁄TA,⁄⁄TB :   TA ƒ TB ahA TB ƒ TA .

The importance of Yang-Baxter operators is partly explained by the following
considerations. For any category  A ⁄,  there is a braided tensor category  B⁄⁄ÚA of braids
having their strings labelled by arrows of  A .  (The notation  B⁄⁄ÚA is intended to indicate
that it is a wreath product in a generalized sense [⁄K, JS3⁄].)  The objects of  B⁄⁄ÚA are finite
sequences of objects of  A . An arrow

( a ⁄⁄, f⁄1 , . . . , f⁄⁄n )  :  (⁄A1 , . . . , An⁄⁄) aaA(⁄B1 , . . . , Bn⁄⁄)
consists of  aŒBn and  f⁄i ŒA (Ai , Ba ⁄(i)⁄⁄)  where  i jAa ⁄⁄(i)  is the permutation defined by  a .
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Composition of labelled braids is performed by composing the label on each string of the
composite braid. The operation of addition of braids extends in the obvious way to labelled
braids   B⁄⁄ÚA ¥ B⁄⁄ÚA aaA B⁄⁄ÚA ,  yielding a tensor structure on  B⁄⁄ÚA . There is an obvious
braiding on  B⁄⁄ÚA obtained from the braiding on  B .  We have an inclusion functor

i  :  A aaA B⁄⁄ÚA
identifying  A with the labelled braids with a single string. The braiding on  B⁄⁄ÚA defines a
(formal) Yang-Baxter operator  z on the functor  i .  The next Proposition explains the sense
in which this  z is universal.

Proposition 5  [⁄JS3⁄]. The braided tensor category  B⁄⁄ÚA is free on  A . Moreover, for any

tensor category V and any pair (⁄⁄y⁄, T ⁄),  where  y is a Yang-Baxter operator on  T : A aAV,
there exists a unique (up to a unique isomorphism) tensor functor T ⁄' : B⁄⁄ÚA aAV such
that T ⁄' (z) = y and the following triangle commutes.

B⁄⁄ÚAA

V

T '
T

i

Example 10. For any algebra  A,  a Yang-Baxter operator on the forgetful functor

U  :  Mod (A)  aAVectC
is completely determined by the element

g =  yA,⁄⁄A (1⁄⁄ƒ ⁄⁄1) Œ AƒA .
The operator is given by

yM,⁄⁄N (x⁄⁄ƒ ⁄⁄y)  =  g (y⁄⁄ƒ ⁄⁄x) .
Apart from invertibility, the only condition on  g is the equation

s2 ⁄3 ⁄(⁄g ⁄) s1 ⁄3 ⁄(⁄g ⁄) s1 ⁄2 ⁄(⁄g ⁄)  =  s1 ⁄2 ⁄(⁄g ⁄) s1 ⁄3 ⁄(⁄g ⁄) s2 ⁄3 ⁄(⁄g ⁄)
where  si ⁄j :  AƒA aAAƒAƒA  are the insertion operators. We shall say that an invertible
element  g ⁄ŒAƒA  satisfying these equations is a Yang-Baxter e l ement of the algebra  A.  It
should be distinguished from the operator  y  that it defines. More precisely, when  A =
End(V) ⁄where ⁄V ⁄is a finite dimensional vector space, a Yang-Baxter element ⁄⁄g ⁄Œ
End(V)⁄ƒ ⁄End(V) @ End(VƒV)  defines a Yang-Baxter operator  R = g o c  where  c : V ƒV
aAV ƒV  is the usual symmetry operator.

Example 11. For any coalgebra  C,  a Yang-Baxter operator  y on the forgetful functor

U :  Comod⁄⁄(C) aaA VectC
is determined by the linear form

g = (C ƒ C
yC , C C ƒ C e ƒ e C) .

We have the formula
y (x ƒ y⁄⁄)  =  ⁄(   g  | x ƒ y⁄⁄)2 ⁄1 =     g 21 | y ƒ x  .

The linear form  g is invertible in the algebra  (C⁄ƒ ⁄C)* and satisfies the following equation

in the algebra   (C⁄ƒ ⁄C⁄ƒ ⁄C⁄)* :
s1 ⁄2 ⁄(⁄g ⁄) * s1 ⁄3 ⁄(⁄g ⁄) * s2 ⁄3 ⁄(⁄g ⁄)  =  s2 ⁄3 ⁄(⁄g ⁄) * s1 ⁄3 ⁄(⁄g ⁄) * s1 ⁄2 ⁄(⁄g ⁄)

where the  si ⁄j are the insertion operators defined before Proposition 3.
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Definition [⁄⁄JS3⁄].  Suppose  V is a braided tensor category. A (full) twist for  V is a natural
family of isomorphisms

q =  qA :  A ahAA
such that  q ⁄I = 1  and the following square commutes. A tensor category equipped with a
braiding and a twist is called a balanced (or  ribbon) tensor category.

A ƒ B B ƒ A

A ƒ B B ƒ A

c
A , B

B , A

A ƒ B B A
qq q

c

ƒ

For any braided bialgebra  (A⁄, g ⁄⁄)  (Example 9), the twists on  Mod⁄⁄(A)  are in bijection
with invertible central elements  tŒA  satisfying the equations

e (t ⁄) = 1    and    d (t ⁄) 2 ⁄1 =  g 2 ⁄1 (t ⁄⁄ƒ ⁄⁄t ⁄)  g .
We have  t = qA(1)  and  q (x) = t x .

Similarly, for any cobraided bialgebra (A⁄, g ⁄⁄), the twists on C o m o d⁄⁄(A) are in bijection

with the invertible central elements  tŒA* satisfying the equations
t (1) = 1    and    t o m =  g ⁄⁄⁄⁄* ⁄(⁄⁄t ⁄⁄ƒ ⁄⁄⁄t ⁄) * g 2 ⁄1 .

Definition [⁄⁄JS3, S h⁄].  A tensor category is said to be tortile when it is balanced and each

object  A  has a left dual  A* satisfying
qA* =  qA

* .

Definition. A tortile Hopf algebra  (⁄H⁄, g ⁄, t ⁄⁄)  is a Hopf algebra  H  equipped with a braiding
g and a twist  t such that  n (t ⁄⁄) = t where  n is the antipode.

Definition. A cotortile Hopf algebra  (⁄H⁄, g ⁄, t ⁄⁄)  is a Hopf algebra equipped with a cobraiding
g and a cotwist  t such that  t o n = n .

The category of finite dimensional comodules over a cotortile Hopf algebra is a
tortile tensor category.

Proposition 6. Every tortile tensor category is autonomous.

Proof. In any braided tensor category, if  ( h , e )  :  A* J A  is an adjunction then  ( h1 , e1 )  :

A J A* is also an adjunction where  e1 = e o c⁄A⁄,⁄⁄⁄A* and  h1 = (cA*,⁄⁄⁄A⁄⁄)–1 o h .  To see this, we
can use the following abstract argument. On any tensor category  (C,⁄⁄ƒ ⁄)  there is a reverse

tensor product  C⁄⁄ƒ ' ⁄D = D⁄⁄ƒ ⁄⁄C .  Clearly, if  (h , e)  :  A* J A  in  (C,⁄⁄ƒ ⁄)  then  (h , e) :  A J A*

in  (C,⁄⁄ƒ ' ⁄).  When  C is braided, we have a natural isomorphism
c = c⁄C⁄,⁄⁄D :  C⁄⁄ƒ ⁄⁄D ahA C⁄⁄ƒ ' ⁄D

which is coherent : it is an isomorphism of the two tensor structures [⁄JS3, JS4⁄]. Using  c  we

can transport the adjunction  (⁄h , e ⁄) :  A J A* in  (C,⁄⁄ƒ ' ⁄)  to an adjunction  (⁄h1 , e1 ⁄)  :  A J
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A* in  (C,⁄⁄ƒ ⁄).  That the formulas for  h1 , e1 are as claimed is now clear. qed

Proposition 7. In a tortile tensor category, the square of the twist qA is given by t h e

following picture:

A

A

q
A =( )

2

Proof. We have the following commutative diagrams:

I A ƒ A*

A ƒ A*

A ƒ A*

A ƒ A*

A* ƒ A

A* ƒ A A* ƒ A

A* ƒ A

I

q  = 1 q q   ƒ q  q   ƒ q  q  ƒ q  

c

c

c

c

h

h

I

A

A

A , A*

A *, A A , A*

A , A*

AƒA* A AAA* A* A*

which show that
c⁄A⁄,⁄⁄A*

–1 c⁄A*⁄,⁄⁄A–1 h A =   ( qA⁄⁄ƒ ⁄⁄qA*⁄⁄)  h A

and therefore, tensoring this equality on the right with  A  and composing on the left with
Aƒ ⁄⁄e A ,  we have

(Aƒ ⁄⁄e A⁄⁄) ( (c⁄A⁄,⁄⁄A*
–1 c⁄A*⁄,⁄⁄A–1 h A ) ƒ ⁄⁄A )  =  (Aƒ ⁄⁄e A⁄⁄) ( qA⁄⁄ƒ ⁄⁄qA* ƒ ⁄⁄A ) (h A⁄⁄ƒ ⁄⁄A ) .

The left-hand side is equal to the value of the picture in the Proposition, so it remains to
show that the right-hand side is equal to  (q A⁄⁄)2.  But we have

⁄e (q A*⁄⁄ƒ ⁄⁄A)  =  ⁄e (A⁄⁄ƒ ⁄⁄q A⁄⁄)
since  qA* = ⁄⁄q A

* .  The following sequence of pictures finishes the proof.

• • •
•

•
•

q q q q
q

qA*
A

A

A

A

A A A= =

A

A

A

A
qed

The adjunction  (h1 , e1 ⁄)  :  A J A* is not the appropriate one in a tortile tensor
category. The reason is that, if  (h2 , e2 )  denotes the pair obtained by a twofold application
of the assignment  (h , e ⁄) jA (h1 , e1 ⁄⁄),  then we do not have  (h2 , e2 ) = (h , e ⁄⁄).  Let us
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analyse the situation. For these pictures we shall use ribbons rather than strings. The twist
q will be represented by a full right hand screw turn of the ribbon. First, the pictures for  e
and  h are:

e

A* A

h

A A*

The adjunction equations are:

A

A

=

A

A

A*

A*

=

A*

A*

The pictures for e1, h1 and the adjunction identities for them are shown below. By viewing
the adjunction diagrams in 3-dimensional space, we can move the twisted ribbon on the
left of these pictures and put it in the untwisted position on the right (the motion,
technically called an isotopy, is restricted to a left-right sliding of the attached parts at the
top and bottom). 

e

A*A

h

AA*

1

1

A A* A*

A* A*

A

A A
,

= =

We would like to eliminate the looping in the pair  (h1 , e1 ).  One way to do this is to
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cancel the looping by a twist. If we put

e' = e1 o (qA⁄⁄ƒ ⁄A
* ⁄⁄⁄) = e o c A,⁄⁄⁄A*⁄⁄o (qA⁄⁄ƒ ⁄A

* ⁄⁄),     h ⁄' = ⁄(A* ⁄⁄ƒ ⁄qA
–1) o h1  = ⁄(A* ⁄⁄ƒ ⁄qA

–1) o⁄⁄(cA*,⁄⁄⁄A⁄⁄)–1 o h
then the pictures for  e ⁄'  and  h '  are:

A

A

A*

A*

which should be redesigned to look like:

e '

A*A

h '

AA*

A formal verification that this is correct is as follows. If  (h ⁄'', e ⁄'')  is the pair obtained by a
two-fold application of the transformation  (h , e ) jA(h ⁄', e ⁄')  then we have  (h ⁄'', e ⁄'') =
(h , e ).  To see this, look at the picture of  h ⁄''  and compute (some steps of this calculation
are missing and we invite the reader to fill in the gaps):

•

• •

A* A

q q

q

A* A*A A

A

A*

– 1

– 1

– 2

=
A

=

Suppose we have two adjunctions  
(hA , eA⁄)  :  A* J A ,        (hB , eB ⁄)  :  B* J B

in a tensor category. The m a t e of a map  f : X⁄⁄ƒ ⁄⁄A aAB ⁄⁄ƒ ⁄⁄Y  is the map  f⁄⁄@ :  B* ⁄⁄ƒ ⁄⁄X
aAY⁄⁄ƒ ⁄⁄A* described by the diagram
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•

•

•

Y A*

B* X

f

e

h
A

B

Equationally, this means that 

f⁄⁄@ =  ( eB ⁄⁄ƒ ⁄⁄Y⁄⁄ƒ ⁄⁄A
* ⁄⁄) ( B* ⁄⁄ƒ ⁄⁄f⁄⁄ƒ ⁄⁄A* ⁄) ( B* ⁄⁄ƒ ⁄X⁄⁄ƒ ⁄⁄hA⁄⁄⁄) .

Proposition 8. In a braided tensor category, the mate of  cA⁄,⁄B :  A ⁄⁄ƒ ⁄⁄B aaAB ⁄⁄ƒ ⁄⁄A  is

(⁄cA⁄,⁄B*⁄)⁄–1 :  B* ⁄⁄ƒ ⁄⁄A aaAA ⁄⁄ƒ ⁄⁄B*.

Proof. It suffices to prove that  ⁄(cA⁄,⁄B*⁄) (cA⁄,⁄B ⁄⁄)@ =  1,  which is done by the following sequence
of diagrams.

= = =

B* A B* A

For the benefit of the reader, we also give the same proof written in the usual
sequential notation:

(cA⁄,⁄B*⁄) (cA⁄,⁄B ⁄⁄)@ =  ⁄(cA⁄,⁄B*⁄) ( eB ⁄⁄ƒ ⁄⁄A ⁄⁄ƒ ⁄⁄B
* ⁄⁄) ( B* ⁄⁄ƒ ⁄⁄cA⁄,⁄B ⁄⁄ƒ ⁄⁄B

* ⁄) ( B* ⁄⁄ƒ ⁄A ⁄⁄ƒ ⁄⁄hB ⁄⁄⁄)  

=  ( eB ⁄⁄ƒ ⁄⁄cA⁄,⁄B*⁄⁄) ( B* ⁄⁄ƒ ⁄⁄cA⁄,⁄B ⁄⁄ƒ ⁄⁄B* ⁄) ( B* ⁄⁄ƒ ⁄A ⁄⁄ƒ ⁄⁄hB ⁄⁄⁄)  

=  ( eB ⁄⁄ƒ ⁄⁄B* ⁄⁄ƒ ⁄A) (B* ⁄⁄ƒ B ⁄⁄ƒ ⁄cA⁄,⁄B*⁄⁄) (B* ⁄⁄ƒ ⁄⁄cA⁄,⁄B ⁄⁄ƒ ⁄⁄B* ⁄) ( B* ⁄⁄ƒ ⁄A ⁄⁄ƒ ⁄⁄hB ⁄⁄⁄)

=  ( eB ⁄⁄ƒ ⁄⁄B
* ⁄⁄ƒ ⁄A) (B* ⁄⁄ƒ ((B⁄⁄ƒ ⁄cA⁄,⁄B*⁄⁄) o (⁄⁄cA⁄,⁄B ⁄⁄ƒ ⁄⁄B

* ⁄)) ( B* ⁄⁄ƒ ⁄A ⁄⁄ƒ ⁄⁄hB ⁄⁄⁄)

=  ( eB ⁄⁄ƒ ⁄⁄B* ⁄⁄ƒ ⁄A) (B* ⁄⁄ƒ (⁄cA⁄,⁄Bƒ⁄B*⁄⁄)) ( B* ⁄⁄ƒ ⁄A ⁄⁄ƒ ⁄⁄hB ⁄⁄⁄)

=  ( eB ⁄⁄ƒ ⁄⁄B
* ⁄⁄ƒ ⁄A) (B* ⁄⁄ƒ (⁄cA⁄,⁄Bƒ⁄B*⁄⁄ (A⁄⁄ƒ ⁄⁄hB ⁄⁄⁄)))

=  ( eB ⁄⁄ƒ ⁄⁄B* ⁄⁄ƒ ⁄A) (B* ⁄⁄ƒ ((hB ⁄⁄ƒ ⁄⁄A) o ⁄cA⁄,⁄I⁄⁄)⁄⁄)

=  ( ( eB ⁄⁄ƒ ⁄⁄B
* ⁄) o (B* ⁄⁄ƒ hB ⁄⁄)⁄ƒ ⁄⁄A

=   B* ⁄⁄ƒ ⁄A . qed
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Corollary 9. If  (⁄h , e ⁄) :  A* J A  in a braided tensor category then the following equations
ho ld :

= =

,

B

A* B A A* B A B

A B A*

B

A B A*B

Proof. According to Proposition 8, we have the equality

B A* B A*

A* B A* B

=

which composes on the top with  B⁄⁄ƒ e to yield the following equality.

B

A

B

AA* B A* B

=

This proves the result. qed

Definition [⁄JS3, JS4⁄] Let  T : A aAV be a functor from a category  A to a tensor category  V.
A Yang-Baxter operator  y  on  T  is called dualisable when, for all  AŒA ,  the object  TA  has
a left dual  (TA)* and, for all  A, BŒA ,  the mates of  yA⁄,⁄B , (⁄yB ⁄,⁄A⁄⁄)⁄–1 : TA⁄⁄ƒ ⁄⁄TB aA TB⁄⁄ƒ ⁄⁄TA
are invertible.

It was shown by Proposition 8 that a braiding on a tensor category is a dualisable
Yang-Baxter operator if every object has a left dual.

A dualisable Yang-Baxter operator  y  on a functor  T : A aAV can be extended by
duality to a Yang-Baxter operator  y'  on a functor  T' : A ' aAV where  A ' is the disjoint
union A ⁄⁄+ ⁄⁄A ⁄op of the category  A and its opposite  A ⁄op.  To avoid ambiguities, we shall
write  A°  and  f⁄⁄°  for the object and arrow in  A ⁄op corresponding to  A  and  f  in  A .  The
extension of  T  is given as follows:

T'(A)  =  T(A),   T'(A°)  =  T(A)*,   T'(⁄f⁄⁄)  =  T(⁄f⁄⁄),   T'(⁄f⁄⁄°)  =  T(⁄f⁄⁄)*.
The extension of  y  is given as follows:

y'A⁄,⁄B =  yA⁄,⁄B ,      y'A⁄,⁄B° =  (yA⁄,⁄B@⁄⁄)⁄–1,     y'A°⁄,⁄B =  (yA⁄,⁄B–1 )@⁄,     y'A°⁄,⁄B° =  (yA⁄,⁄B ⁄⁄)*.

Proposition 10 [⁄⁄JS3⁄] The extension  y' of a dualisable Yang-Baxter operator is a Yang-Baxter
operator.
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The example of a Yang-Baxter operator  R = Rq :  V ⁄⁄ƒ ⁄⁄V aAV ⁄⁄ƒ ⁄⁄V  previously given,
on a finite dimensional vector space ⁄⁄V ⁄⁄and involving a non-zero  qŒC, ⁄⁄is dualisable. A
tedious straightforward calculation gives the following formulas, where we write  yV ⁄,⁄V for
R  and  yV ⁄,⁄V* for  yV ⁄,⁄V° :

y
V , V

(e i ƒ e j ) =

e j ƒ e i for i > j

e j ƒ e i + (q - q - 1)e i ƒ e j for i < j

q e i ƒ e i for i = j

Ï
Ô
Ì
Ô
Ó

  

y e e
e e for i j

q e e q q q e e for i jV V i j

j i

i i
i k

k k
k i

, ( )( )
( )* ƒ

*

*

- * - -
ƒ

*

>

=
π

+ - =

Ï

Ì
Ô

Ó
Ô

ƒ

ƒ Â1 2 1

y
V

*
, V

(e*
i

ƒ e j ) =
e j ƒ e *

i
for i π j

q - 1 e i ƒ e *
i

+ (q - 1 - q) e
k ƒ e *

k
for i = j

k < i
Â

ÏÔ
Ì
ÔÓ

y
V

*
, V

* (e i ƒ* e j
* ) =

e j ƒ* e i
* for i < j

e j ƒ* e i
* + (q - q - 1)e i ƒ* e j

* for i > j

q e i ƒ* e i
* for i = j .

Ï
Ô
Ì
Ô
Ó

When  R :  V ⁄⁄ƒ ⁄⁄V ⁄⁄aAV ⁄⁄ƒ ⁄⁄V  is a dualisable Yang-Baxter operator on a finite
dimensional vector space, we can use the extension  R'  to define a Yang-Baxter operator on

V ⁄⁄≈ ⁄⁄V *.  The vector space  V⁄⁄≈ ⁄⁄V * is equipped with a non-degenerate symmetric pairing
· x⁄⁄≈ ⁄⁄f ⁄| y⁄⁄≈ ⁄⁄y ⁄Ò =   f (y) + y(x)

and also with a non-degenerate simplectic form

w ⁄⁄(x⁄⁄≈ ⁄⁄f ⁄| y⁄⁄≈ ⁄⁄y)   =   f (y) – y(x).

Definition. Let  R  be a Yang-Baxter operator on an object  Z  in a tensor category, and let  e :
Z⁄⁄ƒ ⁄⁄Z aAI  be an exact pairing. We say that  R  respects e when we have the equations  (in
which the crossings are labelled by  R  and  R ⁄-1 according to the convention previously
explained):

= =

,

•
• • •

e e e e

Proposition 11. If  (h,⁄⁄e) : Z J⁄⁄Z  and if  R  respects  e  then the equations below hold:
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= =

,

•
• • •

h h h h

Proof. Exercise for the reader. qed

Proposition 12. A Yang-Baxter operator  R : Z⁄⁄ƒ ⁄⁄Z aAZ⁄⁄ƒ ⁄⁄Z  which respects an exact pairing
is dualisable.

Proof. The mate of  R  is equal to  R⁄-1 by the diagram equalities:

= =

.
Similarly, the mate of  R⁄-1 is equal to  R.  This proves that these mates are invertible. qed

Proposition 13. If  R is a dualisable Yang-Baxter operator on a finite dimensional vector

space V then its extension R ' to  V ⁄⁄≈ ⁄⁄V * respects both the canonical symmetric and t h e

canonical symplectic pairings on V ⁄⁄≈ ⁄⁄V *.

Proof. Exercise for the reader. qed

Suppose now that  y  is an arbitrary dualisable Yang-Baxter operator on a functor  T 
: A aAV.  The picture below defines a canonical natural transformation

q' = q' A :  T(A) aAT(A)
called the double twist. In the picture we use the extended Yang-Baxter operator  y'  to label
the crossings.

T(A)

T(A)

q 'A =
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Proposition 14. For any dualisable Yang-Baxter operator (y⁄, T ⁄),  the double twist q'  is a
natural isomorphism  q' : T hAT.  Moreover, the following equations hold:

y (q' ƒT)  =  (⁄Tƒq') y ,        y (⁄Tƒq')  =  (q' ƒT) y .

Proof. The picture for the inverse of  q'  is obtained from that for  q'  by rotating through
180° and changing all the crossings; the rest is left to the reader. qed

Definition [⁄⁄JS3, JS4⁄⁄] Let  y  be a Yang-Baxter operator on a functor  T : : A aAV.  A twist on
y  is a natural isomorphism  q : T hAT  such that  y (q ⁄⁄ƒT) = (⁄Tƒq) y ,   y (⁄Tƒq) = (q ¡⁄ƒT) y .
A tortile Yang-Baxter operator is a pair  (⁄y⁄, q ⁄)  where  y  is a dualisable Yang-Baxter operator
and  q is a a twist on  y  such that  q ⁄2 = q'  where  q'  is the double twist defined by  y .
Example 11. In a tortile tensor category, the pair  (c⁄, q ⁄⁄)  is a tortile Yang-Baxter operator
since we have proved that  q ⁄2 = q' (Proposition 7).

Example 12. A short calculation gives that the double twist on the operator  Rq is equal to
the map  x jAq⁄2n⁄⁄x  on  V  of dimension n.  If we put  q ⁄(x)  =  q⁄n⁄⁄x ,  we obtain a tortile
Yang-Baxter operator  (Rq , q ⁄⁄).

§11. Knot invariants.

In this Section we provide a brief introduction to the method used by  V.G. Turaev
[T] to obtain knot invariants. We describe how Yang-Baxter operators can be used to
produce tensor functors from the category of tangles of ribbons to vector spaces; see [MS]
and [⁄JS4]. If we apply the Tannaka duality machinery to these functors, we obtain quantum
groups. This will be the subject of Section 12.

Let  P be a Euclidean plane. A geometric tangle T  is a compact 1-dimensional
oriented submanifold of  [⁄0⁄⁄,⁄⁄1] ¥ P which is tamely embedded and whose boundary  ∂T  is
equal to  T « ∂⁄( [⁄0⁄⁄,⁄⁄1] ¥ P⁄⁄).  We suppose that  T  meets  ∂⁄( [⁄0⁄⁄,⁄⁄1] ¥ P⁄⁄)  transversally. The
target of T  is the subset  ∂T « (⁄{⁄⁄1⁄} ¥ P⁄⁄)  as an oriented submanifold. The source of  T  is the
subset  ∂T « (⁄{⁄⁄0⁄} ¥ P⁄⁄),  but with orientation reversed. A geometric tangle can be depicted: 

– +
–

+

–

+

++

•

•

•

••

•• •

A tangle is an isotopy class of geometric tangles where the isotopies keep the
boundaries fixed. The source and target of a tangle are regarded as signed subsets of  P.  Let
1, 2, 3, . . .  denote equally spaced collinear points in the plane  P.

Now we can define the autonomous braided tensor category T of tangles [⁄FY1&2,
T2]. The objects are functions  A : { 1, 2, 3, . . . , n } aA{ +, – }  for  n ≥ 0,  called signed sets.
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The arrows are the tangles which have these signed sets as sources and targets.
Composition and tensor are as for braids. The braiding is illustrated by the following figure.

+ – + – +

+ – + + –

c(+, –, +), (+, –)

• •

•

•••

• •• •

The left dual  A* of a signed set  A  is given by reversing the order and the signs of the
points. The arrows  hA and  eA are illustrated in the following figure:

h

A

A

A = ( + , – , + )
e

• • • • ••

• •• • ••

– + – + – +

+ – + – + –

Let  S1 be the unit circle in the tangent space of the Euclidean plane  P.  A framing on
a geometric tangle  T  is a continuous function  f : T aAS1.  If  e > 0  is small enough then
the set

Te =  { x + a f⁄⁄(x)  :  xŒT,  0 £ a £ e }
is an embedded surface in  P ¥ [⁄0⁄⁄,⁄⁄1]  which is called a tangle of ribbons. We should think of
the pair  (⁄T, f⁄⁄)  as a tangle of ribbons with arbitrary small width. The source of  (⁄T, f⁄⁄)  is the
source of  T  equipped with the framing induced by  f.  Similarly for the target. The
direction of the line on which  1, 2, 3, . . .   are listed will be called the eastward framing. The
opposite direction is the westward framing. We can now define the tortile tensor category
T~ of tangles on ribbons. The objects of  T~ are the signed subsets of  1, 2, 3, . . . .  W e
suppose that the framing of a positive element of a signed subset is eastward, while the
framing of a negative element is westward. The arrows are the (isotopy classes of) tangles of
ribbons having these framed signed subsets as sources and targets. Composition and tensor
are as in  T .  The braiding is as in  T .  The units and counits of an adjunction  (h A , e A ) : A*

JA  are illustrated in the following figure for A =  ( +, –, – ).

+      +      –      +      –      –

+      +      –      +      –      –

eA h
A

The twist  q is illustrated by the picture:
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– +

– +

q
( – , + )

Theorem 1 [⁄S h⁄]  The category  T~ of tangles on ribbons is the free tortile tensor category
generated by a single object.

This means that, given any tortile tensor category  V and any object  V ŒV,  there
exists a tensor functor  F : T~ aAV,  which preserves the braidings and the twists, such that
F(+) = V;  moreover,  F  is unique up to a unique isomorphism of functors. In this
theorem, the functor  F  is entirely determined by the object V  if everything else is kept
fixed. For example, if  V = Vectf is the category of finite dimensional vector spaces, then the
functor  F  depends only (up to isomorphism) on the dimension of the vector space  V =
F(+).  We obtain, in this way, poor invariants of tangles and knots. To obtain better
invariants, we need to complement this theorem by another one.

Recall that a tortile Yang-Baxter operator in a tensor category  C is a triple  (⁄⁄V, R, q ⁄⁄)
where  R : V ƒV hAV ƒV  is a dualisable Yang-Baxter operator and  q : V hAV  is a twist

on  R  such that  q ⁄2 = q',  where  q'  is the canonical double twist defined by  R (as defined
before Section 10 Proposition 14).

Theorem 2 [⁄T, JS4⁄] The category  T~ of tangles on ribbons is free on a tortile Yang-Baxter
operator.

This means that, in order to define a tensor functor  F : T~ aAC,  it suffices to select a
tortile Yang-Baxter operator  (⁄⁄V, R, q ⁄⁄)  in  C.  The tensor functor  F  is the only (up to a
unique isomorphism) one for which  V = F(+),  R = F(c+,+)  and  q = F(q+⁄).

This is the method used by Turaev to obtain knot invariants like the Jones
polynomial. In this case  C is the category of vector spaces. Using the tortile Yang-Baxter
operator  (⁄⁄Rq , q ⁄⁄)  defined in Section 10, we can associate a number  P(q) = F(K)  to any
framed knot  K  (considered as a morphism  K : I aAI  in the tensor category  T~ ).  This
number depends on  q ,  and is, in fact, a Laurent polynomial in  q.

§12. Quantum groups.

Let  R  be a Yang-Baxter operator on a finite dimensional vector space  V.  We saw i n
Section 10 how  R  can be used to define a tensor preserving functor

p :  B  aaAVectfC
such that  p(1) = V  and  p(c1,1) = R.  If we apply the Tannaka duality machinery to the
functor  p,  we obtain a bialgebra  End⁄(p)  that we shall denote by  OR(End(V)).  This
notation is borrowed from algebraic geometry where  O(X)  usually denotes the ring of
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regular functions on an affine algebraic variety  X.  When  X = G  is a compact Lie group,
O(G)  is the ring of representative functions on  G.  If  R  is the usual symmetry operator

xƒy jAyƒx  then  OR(End(V)) = S(End(V)) = S(End(V)* ⁄)  is the symmetric algebra on

End(V)*,  or equivalently, the algebra of polynomial functions on  End(V).  For a general  R,
the algebra  OR(End(V))  is not commutative, and should be thought of as the algebra of
regular functions on a "non-commutative" geometric object. Let us describe the algebra
OR(End(V))  by generators and relations.

Let  e1, . . . , en be a basis for  V  and let  xi
j =  [⁄⁄ej

* ⁄⁄ƒ ⁄⁄ei ⁄⁄]  be the images of the elements

ej
* ⁄⁄ƒ ⁄⁄ei under the canonical map

[   ]  :  End(V) aaA OR(End(V)).

With respect to the basis  {⁄ei ⁄⁄ƒ ⁄⁄ej⁄}  of  VƒV,  we have

R(e i ƒ e j ) = e r ƒ es
r , s
Â R i j

r s .

Proposition 1. A presentation of the algebra  OR(End(V))  is provided by the generators  xi
j

for  1 £ i, j £ n  and the relations

R k r
s t xi

k

k , r
Â x j

r = R i j
k r xk

s

k , r
Â xr

t .

Before giving a proof, we shall analyse the meaning of the relations in the present-
ation. For an algebra  A,  we shall say that a coaction  a : V aAV ƒA  respects the Yang-
Baxter operator  R  when the following square commutes.

V ƒ V V ƒ Vƒ A

V ƒ V  V ƒ Vƒ A

a ƒ a

R R ƒ A

 a ƒ a

This condition is expressed by the equations

R k r
s t a i

k

k , r
Â a j

r = R i j
k r a k

s

k, r
Â a r

t

where a(e i) = e j ƒ a i
j

j
Â .

The canonical coaction (Section 8 Proposition 3)
g 1 :  V aaAV ⁄ƒ ⁄⁄End⁄(p)

respects the Yang-Baxter operator  R  since, by the naturality of  g ,  the square

V ƒ V V ƒ V ƒ End ( p )

V ƒ V  V ƒ V ƒ End ( p )

g

p(c     ) p(c     ) ƒ 1

 g

2

2

1, 11, 1

⁄

⁄

commutes, and we have (Section 10 Proposition 4)

74



p (c1, 1⁄⁄)  =  R,          g ⁄2 =  g ⁄1 ƒ g ⁄1 .

This implies that the relations in the purported presentation of  OR(End(V)) = End⁄(p)  are
satisfied since

g 1(e i ) = e i ƒ
j

Â [e j ƒ* e i] = e j ƒ
j

Â x i
j

.

Proposition 1 is now an immediate consequence of Proposition 2 below (which refers to the
triangle).

V V ƒ O  (End(V))

V ƒ A
a

V ƒ a 

g

R

~

1

Proposition 2. For any algebra  A and any coaction a : V aAV ƒA respecting  R, there is a

unique map of algebras a~ : OR(End(V)) aAA  such that the above triangle commutes.

Proof. Let  a : V aAV ƒA  be a coaction respecting  R.  Then  R  is a Yang-Baxter operator
on the object  (V,⁄⁄a)  of the category  Cof ⁄⁄(A)  (see Section 10). Using Section 10 Proposition 4,

we obtain a tensor functor  p~ : BaACof ⁄⁄(A),  or equivalently, a tensor-preserving natural
transformation  p aAp ⁄ƒA.  Using Section 8 Proposition 3, we obtain a map of algebras

End⁄(p) aAA.  The rest of the proof is left to the reader. qed

The coalgebra structure on  OR(End(V))  is the usual one. On the generators  xi
j we

have
D xi

j =  Sk xk
j  xi

k ,      e ( xi
j⁄⁄)  =  d i

j .

If  R  is the usual symmetry operator  xƒy jAyƒx,  the relations reduce to
xi

t  xj
s =   xj

s  xi
t

so that  OR(End(V)) = S(End(V)).
When  R  is the Yang-Baxter operator  xƒy jA(–1)p⁄q⁄⁄yƒx  on a Z/2 -graded vector

space  V = V0 ⁄≈ ⁄V 1 ,  we have a decomposition
End(V)  =  End(V0 ⁄⁄) ≈ End(V1 ⁄⁄) ≈ Hom(V0 ⁄⁄,V1 ⁄⁄) ≈ Hom(V1 ⁄⁄,V0 ⁄⁄)

giving rise to a decomposition
OR(End(V))  =  S(End(V0 ⁄⁄) ≈ End(V1 ⁄⁄)) ƒ L(Hom(V0 ⁄⁄,V1 ⁄⁄) ≈ Hom(V1 ⁄⁄,V0 ⁄⁄))

where  L indicates an exterior algebra.
When  R = Rq (see just before Proposition 4 in Section 10), we have the following

presentation for  OR(End(V)) = Oq(End(V)):

x j
k x i

r =

x i
r x j

k for i < j and k < r

x i
r x j

k + (q -q - 1 ) x j
r x i

k for i < j and r < k

q x i
k x j

k for i < j and k = r

q x i
k x i

r for i = j and k < r .

Ï
Ô
Ô
Ì
Ô
Ô
Ó
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When  R  is a dualisable Yang-Baxter operator we shall describe a quantum group
OR(GL(V)).  For this we can follow a method similar to the one just used to describe the
bialgebra  OR(End(V)).  First, let  B' be the free tensor category generated by the quintuple

(D*, D, h, e, R)  where  (h, e) : D* JD  and  R : DƒD aADƒD  is a dualisable Yang-Baxter
operator on  D.  It is possible to give a geometric model for  B' like the one described i n
Section 11 (but, in this case, we use tangles of strings such that the front projection defines
an immersion into the yz-plane). However, no explicit description of  B' is necessary. It can
be proved that  B' is braided and autonomous (it is in fact the free autonomous braided
tensor category on a single object [⁄FY2]⁄). Using the dualisable Yang-Baxter operator  R,  we
can define a tensor functor

p'  :  B'aaAVectf
such that  p' ((+)) = V  and  p' (c⁄+, +⁄) = R .  We put

OR(GL(V))  =  End⁄(p'),
which is a Hopf algebra since  B' is autonomous. It is also cobraided since  B' is braided.
We shall give a presentation of  OR(GL(V))  in terms of  OR(End(V)).  Recall that an action
a : V aAV ƒA  is (left) dualisable if its matrix  a = (⁄ai ⁄j ),  with respect to some basis of  V,
is invertible. The canonical coaction

g ⁄+ :  V aAV ⁄⁄ƒ ⁄⁄OR(GL(V))
is left dualisable with

g ⁄– :  V* aAV * ⁄⁄ƒ ⁄⁄OR(GL(V))
as left dual. We have the following result whose proof is left to the reader.

Proposition 3. Let  R be a dualisable Yang-Baxter operator o n V.  For each algebra A  and
each dualisable coaction a : V aAV ƒA  respecting R,  there is a unique algebra m a p a~ :
OR(GL(V)) aAA  such that the following triangle commutes.

V V ƒ O  (GL(V))

V ƒ A
a

V ƒ a 

g

R

~

+

Let us denote by  OR(End(V))[⁄x⁄–1⁄]  the algebra obtained from  OR(End(V))  by
adjoining the entries of an inverse  x⁄–1 of the matrix  x = (xi

j⁄)  together with the relation
x⁄–1 x  =  x x⁄–1 = id.

Corollary 4. There is a canonical isomorphism
OR(GL(V))  @ OR(End(V))[⁄x⁄–1⁄] .

When  R = Rq ,  the description of  Oq(GL(V))  is even simpler. The element

d = (-q )
s

x1
s(1)

s
Â . . . x m

s (m)

turns out to be in the centre of the algebra  Oq(End(V)).  According to [⁄FRT⁄], it suffices to
invert  d  in order to obtain  Oq(GL(V));  that is, we have

Oq(GL(V))  =  Oq(End(V))[⁄d⁄–1⁄].

If we force  d  to be  1,  we obtain the quantum group
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Oq(SL(V))  =  Oq(End(V))/d⁄⁄=⁄⁄1 .

A lot of other quantum groups can be obtained as subgroups of  OR(GL(V)).  For
example, if  e :  V ƒV aAC is a pairing respected by the Yang-Baxter operator  R  then there
will be a quantum subgroup

OR(GL(V))  aå OR(O(V, e))
of orthogonal transformations preserving  e.  

Also, the reader might enjoy reading  [W]  on the compact quantum group

Oq⁄(SU(n)). Finally, we encourage the reader to study quantum Grassmannians and

quantum spheres [Pd].
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