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The Plan

Step 1 Recall the ordinary notion of

Frobenius algebra over a field  k . 

Step 2 Lift the concept from linear algebra

to a general monoidal category and justify

this with examples and theorems.

Step 3 Lift the concept up a dimension so

that monoidal categories themselves can be

examples.
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Frobenius algebras
An algebra  A  over a field  k  is called Frobenius

when it is finite dimensional and equipped with a

linear function    e : A kæÆæ such that:

  e( )ab = 0 for all    a AŒ implies    b = 0.  

Example

  A M kn= ( ) =  the algebra of    n n¥ matrices over  k

  e( )a =  the trace  Tr(a)  of  a .

More generally, for any Frobenius algebra  A ,  we

can enrich the algebra    M An( ) with the Frobenius

structure    M A A kn
Tr( )æ Ææ æ Ææe .  It follows, using

W e d d e r b u r n T h e o r y , t h a t e v e r y f i n i t e -

dimensional semisimple algebra admits a

Frobenius structure.
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Example
X  an n-dimensional oriented compact manifold

  H Xm( ) = de Rham cohomology of  X  of degree  m

=  closed differentiable m-forms on  X  
modulo exact forms.

  
H X H X

m

n
m*

=
= ≈( ) ( )

0
is a real algebra under wedge product 

integration  
    X

H XÚ * æÆæ: ( ) R over  X  

provides a Frobenius structure.
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Monoidal categories

A category  V is mono ida l when it is equipped

with a functor      ƒ ¥ æ Ææ:V V V (called the tensor

product),  an object  I   of  V (called the tensor

unit),  and three natural families of isomorphisms

  A B C A B C I A A A Iƒ( )ƒ @ ƒ ƒ( ) ƒ @ @ ƒ,

in  V (called associativity and unital constraints),

such that the pentagon, involving the five ways of

bracketing four objects, commutes, and the

associativity constraint with  B = I  is compatible

with the unit constraints.  

Example    V = Vectk = the category of k-linear
spaces with usual tensor product

Example     V = =Vect p Gk
G

kRe = the category of k-
linear representations of the group  G with usual
tensor product
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Braided and symmetric monoidal categories

Call  V braided when it is equipped with a natural

family of isomorphisms

  c A B B AA B, : ƒ @ ƒ

(called the braiding) satisfying two conditions (one

expressing    cA B Cƒ , in terms of associativity

constraints,   1A B Ccƒ , and    c C A B, ƒ 1 ,  and a

similar one for    cA B C, ƒ ).  

A braiding is a symmetry when     c cB A A B A B, ,o = ƒ1 .  

Example

  Vectk is symmetric as is the more general    Rep Gk
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String diagrams 

Morphisms   f A B C D E: ƒ ƒ æÆæ ƒ in a monoidal

category  V can be represented by diagrams in the

Euclidean plane:

 f 

A
B

C

D E .

The strings are labelled by objects and the nodes are

labelled by morphisms.  

Composition of morphisms is performed vertically

while tensoring is horizontal, creating more

complicated plane graphs.

This geometric calculus in the plane faithfully

represents calculations in monoidal categories. 

We shall see how this works as we continue.
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Monoids in a monoidal category

A m o n o i d in  V is an object  A  equipped with a

"multiplication"   m : A Aƒ æÆæ A and a "unit"

  h : I AæÆæ satisfying 

the associativity condition:

m

m
=

m

m

and the unit condition:

m

h

= = m

h

Here all strings are labelled by  A .
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Examples
∑ A monoid in the category  Set  of sets, where
the tensor product is cartesian product, is a monoid

in the usual sense. 

∑ If we use the coproduct (disjoint union) in  Set
as tensor product, every set has a unique monoid

structure.  

∑ A monoid in    Vectk ,  with the usual tensor
product of vector spaces, is precisely a k-algebra;

monoids in monoidal k-linear categories are also

sometimes called algebras. 

∑ A monoid in the dual category    Vectk
op ,  with

the usual tensor product of vector spaces, is

precisely a k-coalgebra. 

∑ A monoid in the category    Cat of categories
(where the morphisms are functors and the tensor

product is cartesian product) is a strict monoidal

category.    
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Duality within a monoidal category
A duality A JB  between two objects  A  and  B  i n

a monoidal category  V is a pair of morphisms

  a : A B Iƒ æÆæ and     b : I B AæÆæ ƒ

called the counit and unit,  respectively, such that

a

A b =
A

B A
=

Ba

b

B
A

B
and

A monoidal category is called autonomous

(compact or rigid) when for every object A  there

exist  B  and  C  with  C JA JB.

Example
We have  AJB  in    Vectk for some  B  if and only

if  A  is finite dimensional;  in this case,  

  A
*JA J  A

*

where    A
* =   Vect A kk ,( ) is the space of linear

functions from  A  to  k.    
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Frobenius monoids in a monoidal category

Theorem Suppose A  is a monoid in  V and

  e : A IæÆæ is a morphism. The following six
conditions are equivalent and define Frobenius
monoid:

(a) there exists    r : I A AæÆæ ƒ such that 

    A A A Aƒ( ) ƒ( ) = ƒ( ) ƒ( )m r m ro o

and     A Aƒ( ) = = ƒ( )e r h e ro o ;

(b)  there exists    d : A A AæÆæ ƒ such that 

    A A A Aƒ( ) ƒ( ) = = ƒ( ) ƒ( )m d d m m do o o

and     A AAƒ( ) = = ƒ( )e d e do o1 ;

(c)  there exists    d : A A AæÆæ ƒ such that    A, ,e d( )
is a comonoid and 

    A A A Aƒ( ) ƒ( ) = = ƒ( ) ƒ( )m d d m m do o o ;

(d) a counit    s : A A Iƒ æÆæ exists for a duality
AJA with     s m s mo oA Aƒ( ) = ƒ( );
(e)    s e m= o is a counit for  AJA;

(f)  the free functor     F
A:V VæÆæ is right adjoint to 

the forgetful functor      U
A:V VæÆæ with counit  e .

Example If  B J A J B  then    A Bƒ is a
Frobenius monoid in  V.
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The self-dual nature of Frobenius monoid

Part (c) of the Theorem:

A Frobenius algebra consists of a monoid and
comonoid structure on  A  subject to the condition 

m

d
=

d
=m

d

m

Invertibility of Frobenius monoid morphisms

If    f A B: æÆæ is both a monoid and comonoid
morphism then it has inverse represented by

B

A

m
  f

e

d

h
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Commutative Frobenius monoids

Assume  V is braided.  

A monoid  A  in  V is commutat ive when

  A A A A
cA Aƒ æ Æææ ƒ,

A

m m

.

A comonoid  A  in  V is cocommutat ive when

  A A A A
cA Aƒ æ Æææ ƒ,

A

d d

.

Proposition
For a Frobenius monoid,  commutativity is

equivalent to cocommutativity.

12



The group algebra

A

G     finite  group A  =  k G

  A A Aƒ æ Ææm1

  g h ghƒ a

  A A Ad1æ Ææ ƒ

  g g ga ƒ

  A
*

  A A Ad2æ Ææ ƒ

  
g g h h

h

a - ƒÂ 1

  A A Aƒ æ Ææm2

  
g h

g for g h
otherwise

ƒ
=Ï

Ì
Ó

a
0

cocom.
 Hopf

com.
Hopf

Frobenius commutative and
cocommutative Frobenius

Moreover, the lower right square is a commutative
and cocommutative Frobenius algebra in    Rep Gk .

Larson-Sweedler: Every finite-dimensional Hopf
algebra admits a Frobenius structure.

However: the coalgebra structure of the Frobenius
structure is not that of the Hopf algebra.
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2D Topological Quantum Field Theories
There is a symmetric monoidal category    2Cob of 
2-cobordisms:  

objects are natural numbers; 

a morphism   M n m: æÆæ is an oriented two-
dimensional cobordism whose boundary consists
of n circles with inward orientation and m circles
with outward orientation, where two morphisms
are identified when there is an orientation-
preserving diffeomorphism between them.

4

3

composition is vertical stacking when target of one 
and source of other match;
tensoring is horizontal placement.

A 2D topological quantum field theory is a
symmetric strong monoidal functor  

  T : 2Cob æÆæ Vectk .
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A universal commutative Frobenius monoid

Theorem
In   2Cob there is a commutative Frobenius algebra

1
object

multiplication
unit

comultiplication
.counit

Every commutative Frobenius m o n o i d A  in any
symmetric monoidal category V is the va lue

  A T= 1 of an essentially unique symmetric strong

monoidal functor     T : 2Cob æÆæ V .

Indeed, evaluation at 1 determines an equivalence
of groupoids

    SymmStMon CommFrob( ) – ( )~2Cob,V V .

Corollary
2D topological quantum field theories are
determined up to isomorphism by commutat ive
Frobenius algebras. 
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Modules
There is a monoidal bicategory    Vect Modk- :

objects are k-linear categories  A , B , . . . ;

morphisms       A BMæ Ææ are k-linear functors

   M Vectop
k: B Aƒ æÆæ

(called modules from  A t o B ) ;
2-cells are natural transformations;

composition of modules     A B CM Næ Ææ æ Ææ

has     N M C Ao( )( ), defined as the coequalizer of 

   
M B A B B N C B M B A N C B

B B B B

( , ) ( , ) ( , ) ( , ) ( , )
, ,

¢ ƒ ¢ ƒ æÆæ
æÆæ

ƒ
¢ ¢

’ ’B

(called tensor product over B ) ;

tensor product    A Bƒ is defined by

   ob ob obA B A Bƒ( ) = ¥

    A B A Bƒ( ) ¢ ¢( ) = ¢( )ƒ ¢( )( , ),( , , ,A B A B A A B B .

    A op behaves like a dual for vector spaces: 

there is an equivalence between modules  

  A B Cƒ æÆæ and  modules     B A CæÆæ ƒop .
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Frobenius monoidal categories

Just as we looked at monoids in monoidal

categories, we look at pseudomonoids in monoidal

bicategories.  In   Vect Modk- the pseudomonoids

include monoidal k-linear categories such as

  Vectk itself.

The Frobenius requirement is related to the

notion of star-autonomy due to Michael Barr.

Every rigid (autonomous, compact) monoidal

category is star-autonomous. In particular,    Vectk

is Frobenius.

Quantum groupoids provide further examples

of Frobenius pseudomonoids. For further details: 

[DS2]  Brian Day and Ross Street, Quantum categories, star
autonomy, and quantum groupoids, Fie lds  Institute
Communications 43 (Amer. Math. Soc. 2004) 193-231.

[St]  Ross Street, Frobenius monads and pseudomonoids, 
J. Math. Physics 45(10)(to appear October 2004).
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