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The real numbers are traditionally constructed step by step from
the natural, integer and rational numbers. The naturals are built
from the �ve Peano postulates, the integers as equivalence classes
of ordered pairs of naturals, the rational numbers as equivalence
classes of ordered pairs of integers and the reals as equivalence
classes of fundamental rational sequences.

This paper will present an eÆcient construction of the reals.
We skip rational numbers and construct the reals directly from
the set of integer numbers. Our investigation was motivated by
Prof. Ross Street who explained this idea in a short paper 1

published in 1985.

1 Motivation

Notice that a real number � determines a function f : Z ! Z given by
f(n) = i.p(�n), where \i.p" denotes \integer part".

Then f(n)=n! � as n!1 and jf(m+ n)� f(m)� f(n)j � 3.

From that motivation, we attempt to construct the real number system
directly from the set of integers by quasi-homomorphism functions in ZZ.

First of all, some explanation about bounded and quasi-homomorphism
function is needed.

Consider a function f : Z ! Z and the set ZZ of all functions from Z

to Z. This set is pointwise additive, i.e (f + g)(x) = f(x) + g(x)

1R. Street, An eÆcient construction of the real numbers,
Gazette Australian Math Society. 12 (1985) 57-58
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De�nition 1. A function u : Z! Z is bounded when its image is �nite, i.e

when exists k 2 N such that ju(x)j � k 8x 2 Z

De�nition 2. De�ne f 2 Z
Z to be a quasi-homomorphism when

f(x+ y)� f(x)� f(y) is bounded as a function of (x; y) 2 Z� Z

i.e jf(x+ y)� f(x)� f(y)j � k for some k 2 N and 8(x; y) 2 Z� Z

Theorem 1. The quasi-homomorphisms form a subgroup qh(Z;Z) of ZZ

Proof. Let f; g be quasi-homomorphisms, then:

jf(x+ y)� f(x)� f(y)j � c1

jg(x + y)� g(x)� g(y)j � c2

) jf(x+ y) + g(x+ y)� f(x)� g(x) � f(y)� g(y)j � c1 + c2

j(f + g)(x + y)� (f + g)(x)� (f + g)(y)j � c1 + c2

Therefore f + g is also a quasi-homomorphism.
Let n 2 Z. Then

njf(x+ y)� f(x)� f(y)j � jnjc1

jnf(x+ y)� nf(x)� nf(y)j � jnjc1

i.e nf is also a quasi-homomorphism.

Theorem 2. The bounded functions form a subgroup of qh(Z;Z)

Proof. Let f; g be bounded functions, then

jf(x)j � k1 8x 2 Z

jg(x)j � k2 8x 2 Z

) jf(x) + g(x)j � k1 + k2

j(f + g)(x)j � k1 + k2

Therefore f + g is bounded.
Let n 2 Z, then:

njf(x)j � jnjk1

jnf(x)j � jnjk1

So nf is bounded.
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We should still show all bounded functions are quasi-homomorphisms.
Let f be a bounded function, then

jf(x)j � k1; jf(y)j � k1; jf(x+ y)j � k1

) jf(x+ y)� f(x)� f(y)j � jf(x+ y)j+ jf(x)j+ f(y)j

� 3k1

De�nition 3 (Equivalence). Two functions f; g 2 ZZ can be thought of as

equivalent, denoted by f � g, when 9r 2 N such that jf(m)� g(m)j � r 8m

Note 1. It is easy to see that all bounded functions are equivalent.

Proof. Let f; g be bounded functions, then jf(m)j � k1, and jg(m)j � k2

) jf(m)� g(m)j � jf(m)j+ jg(m)j

� k1 + k2

De�nition 4. Let us de�ne an abelian group R by

R = qh(Z;Z)=�

and de�ne [f ] to represent the equivalence class of all quasi-homomorphisms

� f

Note 2. R is an abelian group since it is the quotient of an abelian group
by a subgroup.

In order to conclude that R is the �eld of real numbers, we have to exam-
ine whether it satis�ses the Field Axioms, Order Axioms and Completeness
properties.

2 Satisfaction of the Field Axioms

Since R is an abelian group under addition, it satis�es �ve axioms of addi-
tion. What we need to point out is that [f ] + [g] = [f + g], the de�nition of
additive identity and �[f ] = [�f ]

De�nition 5 (Additive identity). De�ne 0 : Z! Z given by 0(x) = 0
for all x 2 Z. It is easy to see that 0(x) is a quasi-homomorphism, hence,

[0] 2 R and it is called an additive identity in R.

Note 3. [0] represents all bounded functions since jg(x) � 0(x)j � k ,
jg(x)j � k. Therefore, g � 0, i.e [g] = [0]
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De�nition 6 (Additive inverse). For f 2 R, de�ne �f such that �f(x) = � (f(x)).
[�f ] is the called the additive inverse.

Before proceeding to multiplicative structure, we de�ne [f ][g] to be equal
to [gof ] (where gof is the composite of f and g). To examine the satisfaction
of the de�nition, we let f 0 2 [f ]; g0 2 [g] then prove g0of

0 � gof .

Proof. We have j(g0of
0)(x)� (gof)(x)j = jg0(f 0(x))� g(f(x))j.

Since, f 0 � f , jf 0(x)� f(x)j � k.
Hence we write f 0(x) = f(x) + h(x); jh(x)j � k.

jg0(f 0(x))� g(f(x))j = jg0(f 0(x))� g(f 0(x)) + g(f 0(x))� g(f(x))j

� jg0(f 0(x))� g(f 0(x))j + jg(f 0(x)) � g(f(x))j

� k2 + jg(f(x) + h(x))� g(f(x))j

� k2 + jg(h(x))j + jg(f(x) + h(x))� g(f(x)) � g(h(x))j

� k3

Note: since jh(x)j � k, we have g(h(x)) bounded.
Hence, g0of

0 � gof , i.e [g
0

of
0] = [gof ]

<M1>(Multiplicative closure) For every [f ]; [g] 2 R, we have [f ][g] 2 R.

Proof. [f ][g] = [gof ] = all functions � g(f(x)). Since f(x) 2 Z,
g(f(x)) 2 qh(Z;Z)
Therefore, [gof ] 2 R

<M2>(Multiplicative associativity) For every [f ]; [g]; [h] 2 R, we have
[f ]([g][h]) = ([f ][g])[h].

Proof. We need to show [fo(goh)] = [(fog)oh]

j(fo(goh)(x)� ((fog)oh)(x)j = jf(g(h(x))) � ((fog)(h(x)))j

= jf(g(h(x))) � f(g(h(x)))j

= 0 < k

Therefore fo(goh) � (fog)oh, i.e [fo(goh)] = [(fog)oh]

<M3>(Multiplicative commutativity) For every [f ]; [g] 2 R, we have
[f ][g] = [g][f ].
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Proof. Let [f ] 2 qh(Z;Z), then 8m;n 2 Z; jf(m+n)�f(m)�f(m)j � k
If m � 0, we have (m� 1) equations as follows:

jf(n+ n)� f(n)� f(n)j � k

jf(2n+ n)� f(2n)� f(n)j � k

...

jf((m� 1)n+ n)� f((m� 1)n)� f(n)j � k

Adding these gives jf(mn)�mf(n)j � (m� 1)k
If m < 0, we have jmj+ 1 equations:

jf(0 + n)� f(0)� f(n)j � k

jf(�n+ n)� f(�n)� f(n)j � k

jf(�2n+ n)� f(�2n)� f(n)j � k

...

jf(mn+ n)� f(mn)� f(n)j � k

Adding these gives

j � f(mn)� jmjf(n)j � (jmj+ 1)k

) jf(mn) + jmjf(n)j � (jmj+ 1)k

) jf(mn)�mf(n)j � (jmj+ 1)k

So 8m; jf(mn)�mf(n)j � (jmj+ 1)k.
By symmetry, jf(mn)� nf(m)j � (jnj+ 1)k:
Therefore, jnf(m)�mf(n)j � (jmj+ jnj+ 2)k:

Consider the inequality jg(mn)�mg(n)j � (jmj+ 1)k
Let n = 1:

jg(m) �mg(1)j � (jmj+ 1)k

) g(n) � jng(1)j + (jnj+ 1)k

g(n) � (jnj+ 1)k1 + (jnj+ 1)k

g(n) � (jnj+ 1)k2

Consider jnf(m)�mf(n)j � (jmj+ jnj+ 2)k.
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Let m = g(n), then

jnf(g(n))� g(n)f(n)j � ((jnj+ 1)k2 + jnj+ 2)k

= (jnj+ 1)k3

jn(fog)(n) � g(n)f(n)j � (jnj+ 1)k3

) jn(gof)(n)� f(n)g(n) � (jnj+ 1)k4

) jn(gof)(n)� n(fog)(n)j � (jnj+ 1)k5

j(gof)(n)� (fog)(n)j �

�
jnj

jnj
+

1

jnj

�
k5

=

�
1 +

1

jnj

�
k5

� 2k5

Therefore fog � gof , so [fog] = [gof ], i.e [g][f ] = [f ][g]

<M4>(Multiplicative identity) For every [f ] 2 R, there exists a unique
element [1] 2 R, such that [f ][1] = [f ].

De�nition 7 (Multiplicative identity). De�ne 1 : Z ! Z, given

by 1(x) = x. It is easy to see that 1 2 qh(Z;Z), i.e [1] 2 R and is the

set of all functions � 1 . [1] is called the multiplicative identity.

Proof. We have[f ][1] = [1of ], so

j(1of)(x)� f(x)j = j1(f(x)) � f(x)j

= jf(x)� f(x)j

= 0 � k

Therefore, 1of � f , so [1of ] = [f ], i.e [f ][1] = [f ].

Before proceeding to multiplication inverse, notice that [0] cannot have
an inverse. Let [f ] 6= [0], then f is not bounded above (or below). Indeed,
if f is not bounded above then it is not bounded below.

Proof. Suppose that f(x) is not bounded above as x ! +1. We will
show that f(x) is not bounded below as x ! �1. Since f is quasi-
homomorphism, we obtain:

jf(x+ (�x))� f(x)� f(�x)j � k

) jf(x) + f(�x)j � k + jf(0)j

So f(x) + f(�x) is bounded. However, f(x) is not bounded above, hence,
f(�x) must not be bounded below.
f(x) not bounded above as x! �1 case follows similarly.
Therefore, if f is not bounded above, then it is not bounded below.
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De�nition 8 (Left-bounded). f is said to be left-bounded i� there exists

n 2 Z such that for all negative integer m, we have jf(m)j < jnj

i.e, f is not left-bounded i� for all n 2 Z, there exists a negative integer
m such that jf(m)j � jnj

De�nition 9 (Right-bounded). f is said to be right-bounded i� 9n 2 Z

such that for all m � 0 in Z, we have jf(m)j < jnj

i.e, f is not right-bounded i� 8n 2 Z;9m� 0 in Z : jf(m)j � jnj

<M5>(Multiplicative inverse) For every [f ] 2 R such that [f ] 6= [0],
there exists [ �f ] 2 R such that [f ][ �f ] = [1]

Proof. We are going to show that there exist such [ �f ] and it is unique.
Let [f ] be a non-zero element of R. Then f is not bounded.

i. If f is not left-bounded

** For n < 0, let �f(n) = m be the �rst negative integer such
that f(m) � n ) f(m+ 1) > n
Therefore, f( �f(n) + 1) > n � f( �f(n)).
Since f 2 qh(Z;Z), we have

jf( �f(n) + 1)� f( �f(n))� f(1)j � k

) f( �f(n) + 1) � k + f( �f(n)) + f(1)

Hence,

n < k + f( �f(n)) + f(1)

) n� f( �f(n)) < k + f(1)

Since n� f( �f(n)) � 0; jn� f( �f(n))j < jk + f(1)j = k1
) j1(n) � f( �f(n))j � k2, i.e [ �f ][f ] = [1]

** For n � 0, let �f(n) = m is the �rst negative integer such
that f(m) � n) f(m+ 1) < n.
Therefore, f( �f(n) + 1) < n � f( �f(n)). We have

jf( �f(n) + 1)� f( �f(n))� f(1)j � k

) f( �f(n) + 1) � �k + f( �f(n)) + f(1)

Hence,

n > �k + f( �f(n)) + f(1)

) f( �f(n))� n < k � f(1)

Since f( �f(n))� n � 0; jf( �f(n))� nj < jk � f(1)j = k1
) jf( �f(n))� 1(n)j � k2, i.e [ �f ][f ] = [1]
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ii. If f is not right-bounded

** For n < 0, let �f(n) = m is the �rst positive integer such
that f(m) � n) f(m� 1) > n.
So f( �f(n)� 1) > n � f( �f(n)).
Since f 2 qh(Z;Z), we have

jf( �f(n)� 1)� f( �f(n))� f(�1)j � k

) f( �f(n)� 1) � k + f( �f(n)) + f(�1)

Hence,

n < k + f( �f(n)) + f(�1)

) n� f( �f(n)) < k + f(�1)

Since n� f( �f(n)) � 0; jn� f( �f(n))j < jk + f(�1)j = k1
) j1(n) � f( �f(n))j � k2, i.e [ �f ][f ] = [1]

** For n � 0, let �f(n) = m is the �rst positive integer such
that f(m) � n) f(m� 1) < n.
Therefore f( �f(n)� 1) < n � f( �f(n)). We have,

jf( �f(n)� 1)� f( �f(n))� f(�1)j � k

) f( �f(n)� 1) � �k + f( �f(n)) + f(�1)

Hence,

n > �k + f( �f(n)) + f(�1)

) f( �f(n))� n < k � f(�1)

Since f( �f(n))� n � 0; jf( �f(n))� nj < jk � f(�1)j = k1
) jf( �f(n))� 1(n)j � k2, i.e [ �f ][f ] = [1]

Therefore, there exists an element [ �f ] such that

[f ][ �f ] = [1] = [ �f ][f ]:

Is �f unique? Assume that [ �f 0] is also a multiplicative identity. Then

[f ][ �f 0] = [1] = [f ][ �f ]:

Therefore, j �f 0(f(x))� �f(f(x))j � k
Let y = f(x), we have j �f 0(y)� �f(y)j � k. So �f 0 � �f .
Hence, [ �f 0] = [ �f ]
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<D>(Distributive law) For every [f ]; [g]; [h] 2 R, we have

([g] + [h])[f ] = [g][f ] + [h][f ]

Proof. We need to show [fo(g + h)] = [fog] + [foh].
Since f is quasi-homomorphism, we have

j(fo(g + h))(x) � ((fog)(x) + (foh)(x))j

= jf((g + h)(x)) � (f(g(x)) + f(h(x)))j

= jf(g(x) + h(x)) � f(g(x))� f(h(x))j

� k

Therefore fo(g + h) � (fog) + (foh)
i.e [fo(g + h)] = [fog] + [foh]

3 Satisfaction of the Order Axioms

De�nition 10 (Positive). Call [�] 2 R positive when it can be represented

by some quasi-homomorphism f such that f(n) � 0 8n � 0

Hence, we can alternatively de�ne [f ] 2 R as positive i�

9k; f(n) � k 8n � 0

De�nition 11. ([�] � [�])
Say [�] � [�] when [� � �] is positive.
, 9k; �(x)� �(x) � k 8x � 0

Note 4. Say j�(x)� �(x)j � k1 8x � 0
i.e j(� � �)(x)j � k1 or jf(x)j � k1 8x � 0
What can we say about x < 0?. Infact,

jf(x+ (�x))� f(x)� f(�x)j � k2

) jf(0)� f(x)� f(�x)j � k2

) jf(�x)j � k2 + j � f(0)j+ jf(x)j

Letting x � 0 then jf(x)j � k1, therefore jf(�x)j � k3.
Hence, if f is bounded for x � 0, also bounded for x < 0.

<O1> For every [a]; [b] 2 R, either [a] � [b] or [b] � [a].

Proof. Assume neither of those is true, then

8k1;9x � 0 : b(x)� a(x) < k1

) 8k3;9x � 0 : a(x)� b(x) > k3
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and
8k2;9x � 0 : a(x)� b(x) < k2

Let f(x) = a(x)� b(x), since f is quasi-homomorphism, we have

jf(x+ y)� f(x)� f(y)j � K 8x; y 2 Z

i.e
�K � f(x+ y)� f(x)� f(y) � K

Let x = X be the smallest value of x � 0 such that

a(x)� b(x) = f(x) > 0

Let x = Y be the smallest value of x � 0 such that

a(x)� b(x) = f(x) < �K

Therefore, f(X) > 0; f(Y ) < �K, note that X 6= Y

i. Suppose that X > Y , then we can write X = Y + z; 0 < z � X.
** For Y 6= 0, we have 0 < z < X.
So f(Y + z) = f(X) > 0 and f(z) < 0.
Therefore, f(Y + z)� f(Y )� f(z) > 0� (�K)� 0 = K, (C!).

**For Y = 0, we have f(Y +z)�f(Y )�f(z) = �f(Y ) > K, (C!).

ii. Similarly for Y > X case, we can show that

f(X + z)� f(X)� f(z) < �K

(C!).

Therefore, either [a] � [b] or [b] � [a] 8[a]; [b] 2 R
Note that it is also easy to see [a] � [a] (reexive)

<O2> For all [a]; [b] 2 R, if [a] � [b] and [b] � [a] then [a] = [b]

Proof. We have, [a] � [b] then

8x � 0;9k1; b[x]� a[x] � k1:

[b] � [a] then
8x � 0;9k2; a[x]� b[x] � k2:

Therefore,
8x � 0; jb(x) � a(x)j � min(jk1j; jk2j)

So f(x) = b(x)� a(x) is bounded for all x � 0.
From note above, we have f(x) is also bounded for all x < 0. Hence,
f(x) is bounded for all x, i.e [f ] = [0].
Therefore, [a] = [b].
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Hence, we have de�nition for strict inequality.

De�nition 12. For every [a]; [b] 2 R, say [a] < [b] i� [a] � [b] and
[a] 6= [b]

<O3>(Transitive) For all [a]; [b]; [c] 2 R, if [a] � [b] and [b] � [c] then
[a] � [c]

Proof. 8x � 0, we have:

9k1; b(x)� a(x) � k1

9k2; c(x) � b(x) � k2

Adding those, we have c(x) � a(x) � k1 + k2 = k3; 8x � 0.
Therefore [a] � [c]

<O4> For every [a]; [b]; [c] 2 R satisfying [a] � [b], we have [a]+[c] � [b]+[c]

Proof. We have [a] � [b] so

8x � 0;9k : b(x)� a(x) � k

8x � 0;9k : b(x) + c(x) � c(x)� a(x) � k

) 8x � 0;9k : (b+ c)(x) � (a+ c)(x) � k

Therefore, ) [a] + [c] � [b] + [c]

<O5> For every [a]; [b]; [c] 2 R satisfying [a] � [b], and [c] is positive, we
have [c][a] � [c][b]

Proof. We need to show 8x � 0;9K : b(c(x)) � a(c(x)) � K
We have [c] is positive so 8x � 0;9kc : c(x)� kc � 0
Furthermore, 8x � 0 9k : b(x) � a(x) � k. Since c(x) � kc � 0, we
have

b(c(x) � kc)� a(c(x) � kc) � k

Since b; a 2 qh(Z;Z), we obtain

jb(c(x)� kc)� b(c(x)) � b(�kc)j � kb

) b(c(x)� kc) � kb + b(c(x)) + b(�kc)

and
ja(c(x) � kc)� a(c(x)) � a(�kc)j � ka

) a(c(x) � kc) � �ka + a(c(x)) + a(�kc)

Therefore,

kb + b(c(x)) + b(�kc)� (�ka + a(c(x)) + a(kc)) � k; 8x � 0

) b(c(x)) � a(c(x)) � k � kb � b(�kc)� ka + a(�kc) = K 8x � 0

Hence, [c][a] � [c][b]
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4 Completeness of R

In order to show R is a complete ordered �eld, we need to show it has
Archimedean property and every subset of R which has an upper bound
has the least upper bound.

De�nition 13 (Natural number in R). A natural number [n](or n for

brief) is de�ne to be a class of all function equivalent to an f : Z! Z given

by f(x) = nx

Does this de�nition satisfy all property of natural number? Indeed, it is
easy to see that n(x)+1(x) = nx+x = (n+1)x = (n+1)(x), so [n+1] is the
successor of [n]. It is also clear that [m]+[n] = [m+n] is also a natural num-
ber. Hence, R contains all natural numbers (and integers, similarly) and we
can use natural numbers in addition and multiplication as other R numbers.

Let n be a natural number. Since [n] 2 R, there exists [�n] such that

[n][�n] = [1]. We denote [�n] by
1

n
(which is a rational number if we are

allowed to know rational numbers).

Theorem 3 (Archimedean property). For every [a] 2 R, there exist a

natural number n such that [a] < n

Proof. As mentioned elsewhere, with m;n 2 N, we have

f(mn)�mf(n) � (m� 1)k

Let n = 1, then
f(m)�mf(1) � (m� 1)k < mk

Therefore, f(m) < (f(1) + k)m = p 2 N 8m 2 N.

Theorem 4. Every subset of R which has an upper bound has a least upper

bound.

Before proving the theorem above, we need to show that a Cauchy se-

quence, which satis�es jam� anj <
1

m
+

1

n
when n and m are large enough,

converges.

Proof. Let l(r) = fr(r) with [fr] is Cauchy sequence satisfying the property
above. If we can show that l is quasi-homomorphism then fr does converge.
Since f is quasi-homomorphism, we have

jl(m+ n)� l(m)� l(n)j = jfm+n(m+ n)� fm(m)� fn(n)j

� jfm+n(m) + fm+n(n)� fm(m)� fn(n)j+ km+n

� jfm+n(m)� fm(m)j+ jfm+n(n)� fn(n)j+ km+n

�
1

m+ n
+

1

m
+

1

m+ n
+

1

n
+ km+n � km+n + 4
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Since km+n depends onm and n, we need to show that km+n can be replaced
by a constant.
Suppose f : N ! N is a quasi-homomorphism with

jf(m+ n)� f(m)� f(n)j � k for all m;n 2 N: (1)

As mentioned eslewhere, for all m 2 N , we have

jf(mn)�mf(n)j � (m� 1)k for all n 2 N: (2)

and for all m;n 2 N

jnf(m)�mf(n)j � (m+ n� 2)k: (3)

From (2), let n = 1, we have f(m)�mf(1) � (m� 1)k � mk so that

f(m) � (f(1) + k)m 8m 2 N: (4)

So f(1) + k is an element of the set

Sf = fu 2 Nj f(m) � um for almost all m 2 Ng

[Here \almost" means \all but a �nite number".]

Since N is well-ordered, Sf has a �rst element which we denote by dfe 2 N:
For r 2 N, we de�ne the quasi-homomorphism rf : N ! N by (rf)(m) = rf(m)
as usual. De�ne

�f : N ! N by �f(r) = drfe: (5)

Then
rf(m) � �f(r)m for almost all m 2 N (6)

and
rf(m) � um for almost all m 2 N ) �f(r) � u: (7)

By (6) and (3), we have

�f(r)m � rf(m) � mf(r)� (r +m� 2)k:

So �f(r)� f(r) � �

�
r +m� 2

m
k

�
for almost all m 2 N;m > 0.

Letting m!1, we see that

�f(r)� f(r) � �k: (8)

From (3) we have

rf(m) � mf(r) + (m+ r � 2)k

� (f(r) + k)m+ (r � 2)k

� (f(r) + k + 1)m for m � k(r � 2):

13



By (7),
�f(r) � f(r) + k + 1: (9)

So �k � �f(r)� f(r) � k + 1. Hence f and �f are equivalent. We also need
to show �f is a quasi-homomorphism. In fact, for almost all m 2 N, we have

(r + s)f(m) = rf(m) + sf(m)
(6)

� �f(r)m+ �f(s)m:

By (7), this implies
�f(r + s) � �f(r) + �f(s): (10)

On the other hand,

( �f(r + s)� n �f(s))m
(6)

� (r + s)f(m)� �f(s)m

(9)

� (r + s)f(m)� (f(s) + k + 1)m

= rf(m)� (k + 1)m for almost all m:

By (7), we get
�f(r) � �f(r + s)� �f(s) + k + 1: (11)

Combining (10) and (11), we get

0 � �f(r) + �f(s)� �f(r + s) � k + 1: (12)

So �f is a quasi-homomorphism.

Symmetrically, we can de�ne a quasi-homomorphism f equivalent to f sat-
isfying

�(k + 1) � f(r) + f(s)� f(r + s) � 0: (13)

De�ne g : N ! N by

g(m) =

�
f(m) + �f(m)

2

�
:

Then g � f and

�
k + 3

2
= �

k + 1

2
� 1 � g(r) + g(s)� g(r + s) �

k + 1

2
+ 1 =

k + 3

2
:

If k �
k + 3

2
then k � 3.

If not, by repeating this argument we can always �nd a representative quasi-
homomorphism with f(0) = 0 and k � 3.
Come back to limit of Cauchy sequence, we have

jl(m+ n)� l(m)� l(n)j � km+n + 4 � 3 + 4 = 7:

Therefore, l is quasi-homomorphism and hence, [fr] is convergent.
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Proof. (Theorem 4, see also Exersice 8.1 2)
Let S be a non empty and bounded above subset of R. We need to show S
has least upper bound.
Note that from Archimedian property, we can �nd n 2 Z such that 2x < n,

i.e, x <
n

2
.

Let [a1] be the smallest integer upper bound of S.
Choose [a2] as the smallest half integer upper bound of S.

Thus, either [a1] = [a2] or [a1] =

�
a2 +

1

2

�
, so

[0] � [a1 � a2] �

�
1

2

�

Chose [a3] is the smallest quarter integer upper bound of S.

So either [a3] = [a2] or [a3] =

�
a2 �

1

4

�
. Therefore,

[0] � [a2 � a3] �

�
1

4

�

Similarly, we have

[0] � [a3 � a4] �

�
1

23

�

...

[0] � [an � an+1] �

�
1

2n

�

...

[0] � [am�1 � am] �

�
1

2m�1

�

) [0] � [an � am] �

�
1

2n

�
1 +

1

2
+

1

22
+ � � �

��
=

�
1

2n�1

�
�

�
1

n

�

) j[an]� [am]j <
1

n
+

1

m
. So an is a monotone decreasing Cauchy sequence

of R numbers satisfying jan � amj <
1

n
+

1

m
as n;m large enough. Hence,

an converge to a limit, called [l]. We will show [l] is the least upper bound
of S.
Since [l] is the limit of a sequence of upper bounds of S, [l] is also an upper
bound of S. If [l] is not the least upper bound then there exists a term [az]
of the sequence such that [az] < [l]. However, an is a monotone sequence,
thus an � [l] 8n, (C!).
Therefore, S has a least upper bound.
Since R is an ordered �eld, the least upper bound is unique.

2R. P. Boas, Jr, A Primer of Real Function, The Corus Mathematic Monographs, 13,
MAA, Second Ed, 1972
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5 Conclusion

We have shown that R is a complete ordered �eld. Therefore, we can con-
clude thatR is the �eld of real numbers. This construction can be thought of
as more eÆcient because we by pass the developtment of the rationals, i.e do
not have to build and prove a range of de�nitions, theorems and properties
of rationals.

16


