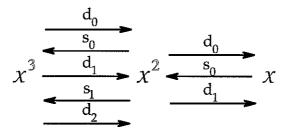
EVERY FACTORIZATION SYSTEM IS ORTHOGONAL

Notation Each category X determines a simplicial category



where $s_0: \mathcal{X} \longrightarrow \mathcal{X}^2$ takes $X \in \mathcal{X}$ to $1_X: X \longrightarrow X$, where $d_0, d_1: \mathcal{X}^2 \longrightarrow \mathcal{X}$ take $f: A \longrightarrow B$ in \mathcal{X}^2 to B, A, respectively, where $s_0, s_1: \mathcal{X}^2 \longrightarrow \mathcal{X}^3$ take $f: A \longrightarrow B$ to the composable pairs $(1_A: A \longrightarrow A, f: A \longrightarrow B)$, $(f: A \longrightarrow B, 1_B: B \longrightarrow B)$, respectively, and, where $d_0, d_1, d_2: \mathcal{X}^3 \longrightarrow \mathcal{X}^2$ take the composable pair $(f: A \longrightarrow B, g: B \longrightarrow C)$ in \mathcal{X}^3 to $g: B \longrightarrow C$, $g \circ f: A \longrightarrow B$, $f: A \longrightarrow B$, respectively. Recall that we have adjunctions $d_0 \dashv s_0 \dashv d_1: \mathcal{X}^2 \longrightarrow \mathcal{X}$ involving a unit $\eta: 1 \Rightarrow s_0 \circ d_0$ and a counit $\epsilon: s_0 \circ d_1 \Rightarrow 1$.

For functors $P: \mathcal{A} \longrightarrow \mathcal{C}$, $Q: \mathcal{B} \longrightarrow \mathcal{C}$, we write $\mathcal{C}(P,Q): \mathcal{A}^{op} \times \mathcal{B} \longrightarrow Set$ for the functor given by $\mathcal{C}(P,Q)(A,B) = \mathcal{C}(PA,QB)$; so $\mathcal{C}(1_{\mathcal{C}},1_{\mathcal{C}})$, or merely $\mathcal{C}(1,1)$, denotes the hom functor of \mathcal{C} .

We shall make use of the natural transformation $\theta: \mathcal{X}(d_0,\ d_1) \longrightarrow \mathcal{X}^2(1,1)$ whose component $\theta_{f,g}\colon \mathcal{X}(B,C) \longrightarrow \mathcal{X}^2(f,g)$, for objects $f:A \longrightarrow B$, $g:C \longrightarrow D$ of \mathcal{X}^2 , is given by $\theta_{f,g}(w)=(\ w\circ f,g\circ w\)$. More conceptually, θ is the following composite.

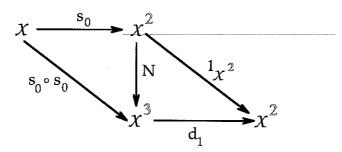
$$\mathcal{X}(d_0,d_1) \xrightarrow{s_0} \mathcal{X}^2(s_0 \circ d_0,s_0 \circ d_1) \xrightarrow{\mathcal{X}^2(\eta,\epsilon)} \mathcal{X}^2(1,1)$$

We say f is orthogonal to g when $\theta_{f,g}$ is invertible.

Proposition 1 For all objects $(f: A \longrightarrow B, g: B \longrightarrow C)$, $(f': A' \longrightarrow B', g': B' \longrightarrow C')$ of X^3 , the following square is a pullback.

$$\begin{array}{c|c}
\mathcal{X}^{3}((f,g),(f',g')) & \xrightarrow{d_{1}} & \mathcal{X}^{2}(g \circ f, g' \circ f') \\
\downarrow d_{1} \circ d_{0} & & & \mathcal{X}^{2}((1,g),(f',1)) \\
\mathcal{X}(B,B') & \xrightarrow{\theta_{f,g'}} & \mathcal{X}^{2}(f,g')
\end{array}$$

Definitions A *decomposition* on a category X is a normalized splitting of $d_1: X^3 \longrightarrow X^2$; that is, a functor $N: X^2 \longrightarrow X^3$ such that the following diagram commutes.



Put $\mathcal{E} = \{ f : A \longrightarrow B \mid d_0 \ N \ (f) \ invertible \}$, $\mathcal{M} = \{ f : A \longrightarrow B \mid d_2 \ N \ (f) \ invertible \}$. A factorization system is a decomposition with $d_2 \ N \ (f) \in \mathcal{E}$ and $d_0 \ N \ (f) \in \mathcal{M}$ for all arrows $f : A \longrightarrow B$ in \mathcal{X} .

Suppose $N: \mathcal{X}^2 \longrightarrow \mathcal{X}^3$ is a decomposition. We shall make use of the natural transformation $\phi: \mathcal{X}(d_0,d_1) \longrightarrow \mathcal{X}^3(N,N)$ obtained by composing θ with the effect of N on homs; explicitly, the component

$$\phi_{f\,,\,g}\colon\thinspace \mathcal{X}(B\,,C) {\:\longrightarrow\:} \mathcal{X}^{\mathbb{S}}\left(N(f)\,,N(g)\right)$$

is given by $\phi_{f,g}(w) = (w \circ f, s \circ w \circ m, g \circ w)$ where we have put

$$N(f) = (e: A \longrightarrow I, m: I \longrightarrow B)$$
 and $N(g) = (s: C \longrightarrow J, i: J \longrightarrow D)$.

Proposition 2 If $f \in \mathcal{E}$ and $g \in \mathcal{M}$ then $\phi_{f,g}$ is invertible.

Proof The hypotheses mean m and s are both invertible. Any $(u, x, v) : N(f) \longrightarrow N(g)$ has $u = s^{-1} \circ x \circ e$, $v = i \circ x \circ m^{-1}$. The inverse of $\phi_{f,g}$ takes (u, x, v) to $s^{-1} \circ x \circ m^{-1}$. Q.E.D.

Proposition 3 Every factorization system $N: X^2 \longrightarrow X^3$ is a fully faithful functor.

Proof Since $N: \mathcal{X}^2(f,g) \longrightarrow \mathcal{X}^3(N(f),N(g))$ has d_1 as a left inverse, it suffices to prove d_1 is injective. The pullback of an injective function is injective so, by applying Proposition 1 to the objects N(f), N(g) of \mathcal{X}^3 , we see that it suffices to prove $\theta_{e,i}$ is injective. So it suffices to prove $\phi_{e,i} = N \circ \theta_{e,i}$ is injective. But N is a factorization system, so $e \in \mathcal{E}$ and $i \in \mathcal{M}$. The result now follows from Proposition 2. **Q.E.D.**

Corollary For a factorization system, each $f \in \mathcal{E}$ is orthogonal to each $g \in \mathcal{M}$.

Proof Propositions 2 and 3 and the equality $\phi_{f,g} = N \circ \theta_{f,g}$ imply $\theta_{f,g}$ is invertible. **Q.E.D.**

Clearly both these classes include all identity arrows.

Ems compose 7 January 2000

(1) First recall the 2-cell aspect of the universal property of X2.

 $K \xrightarrow{u} X \xrightarrow{d_i} X$

If ρ , σ are 2-cells such that $d, u \stackrel{\rho}{\Longrightarrow} d, v$

Tul don It commutes

then there exists a unique 2-cell ω ; $u \Rightarrow v$ such that

 $d, \omega = e & do \omega = \pi$.

Défine e: X2 by $X^{2} = X^{2} = X^{2} = X^{2} = X^{2} = X^{2}$ Axion1 ne: je » j is invertible. dig sig ug

dog commutes

eg

jg

ng then O is invertible. 3 Theorem Suppose (j, E, M) is a decomposition on X satisfying asions 1 & 2. For F: A -> X, fut $\varphi_i = \left(A \xrightarrow{f} X \xrightarrow{g} X \xrightarrow{g} X\right)$ for i = 0,1,2. Then 90, 92 mvertible implies 9, mvertible.

Page S Proof By D, commutativity of $d_1d_1 = d_1d_2$ $d_2 = d_1d_2$ implies]! v;d, >do: X = X such that $d_1 t = \lambda d_2 : d_i d_i \Longrightarrow d_i d_0$ $A d_0 c = 1 : d_0 d_1 = d_0 d_0$. Thus we have commutativity in $q = \epsilon d_i f$ $j d_i f$ [nd,f] III [ndof] dodf dotf = 1 dodof; the top square of this gives commitativity in $d_i e d_i f = d_i d_i f = d_i d_i f$ $\lambda = d, f$ $\lambda = 1$ $\lambda = 1$ $\lambda = 1$ $d_{ed}f = \int d_{i}f \xrightarrow{j \in f} \int d_{o}f \xrightarrow{\varphi^{-1}} d_{o}d_{z}f$.

tage4 So, by D, there exists a unique $\sigma: ed, f \longrightarrow d_2f$ such that $d_i \sigma = 1$ and $d_o \sigma = q_o (j r f)$. Thus we have commutativity in $d_1ed_1f = \frac{d_1\sigma = 1}{}$ adif= Eedif $\int \varepsilon d_2 f = \varphi_2$ jed,f > jdzf ned,f] µd2f doed,f doo dodzf jef jdof = and so $\epsilon d, f = \frac{\beta \epsilon dif}{\beta dif} > jd, f$ ud, f = (udof)(jef)[(µed, f)-1

(Notice that we used less than Axiom 1: merely that ned, f is invertible.) By assom 2, $\theta = \varphi_1 \cdot \varphi_2 \cdot j\sigma \cdot (\mu ed, f)$ is invertible. So jo is a split monic. From V and the invertibility of P2, we see that jo is split epic. So jo is invertible. So $\varphi_1 = \Theta \cdot (\mu ed, f) \cdot (j\sigma) \cdot \varphi_2$ is invertible as required. QED