Update on the efficient reals

Ross Street

September 2003
The description of the real numbers that we are concerned with here I learnt from Steve Schanuel. An "efficient" real number is an equivalence class of "quasihomomorphisms" on the integers \mathbf{Z}; that is, endofunctions on the integers \mathbf{Z} which preserve addition up to an "additivity constant". The efficient reals are isomorphic to the "usual" reals. Peter Johnstone remembered a talk at the University of Sussex by Richard Lewis with the same description. Convinced of its need for wider circulation, I wrote the note [St] outlining the construction and the proof that it formed a complete ordered field. Almost immediately Steve Schanuel noticed a problem with my suggested proof of completeness. I have learnt too that Richard Lewis did not develop a direct proof of completeness. I had a suggestion for an approach but nothing was written until January 2002 when I set the topic as part of a Vacation Scholar project for two bright undergraduate students Ben Odgers and Nguyen Hanh Vo.

My suggestion was to first prove a lemma that every efficient real number could be represented by an endofunction whose additivity constant was no bigger than 3, say. I provided the Vacation Scholars with a handwritten proof (see Lemma 2 below) which is described in their report [OV] as part of their account of completeness. My proof of this lemma was based on operations assigning to each (positive) quasihomomorphism f integers $\lceil f\rceil$ and $\lfloor f\rfloor$; see page 13 of [OV].

Over the years other people have expessed interest in the construction to the point of working seriously on it; some independently rediscovering it, others aware of [St]. For example, in January 2003, I was informed of the appearance of [A'C]; the author was unaware of [St]. An important feature of his completeness proof is the dependence on the lemma I had suggested to Odgers and Vo. What is more, he has a vastly simpler proof and obtains an additivity constant of 1 (which we certainly knew was possible from the identification of our reals with the "usual" reals).

This month (on 18 September 2003) Rob Arthan (who does refer to [St]) kindly sent me his preprint [Ar] with an interesting new slant on the topic. The fundamental tool in his proof of completeness is the operation taking f to $\lfloor f\rfloor$. It had been my intention to look back at [OV] and tidy up some of the arguments but I had not. I now see that there are gaps in the argument appearing in [OV]. I console myself that the techniques I suggested to Odgers and Vo are used in both the proofs of completeness by [A'C] and [Ar].

What follows is some background to these events. The proof of Lemma 1 is essentially due to Odgers and Vo [OV].

A function $\mathrm{f}: \mathrm{M} \longrightarrow \mathbf{Z}$ from a commutative monoid M to the ring \mathbf{Z} of integers is
called a quasihomomorphism (or $q h m$) [St] when there exists a natural number k such that

$$
|\mathrm{f}(\mathrm{~m}+\mathrm{n})-\mathrm{f}(\mathrm{~m})-\mathrm{f}(\mathrm{n})| \leq \mathrm{k}
$$

for all m and n in M . We call k the additivity constant for the qhm.
Two qhms f and g are equivalent when there is a natural number h such that

$$
|f(n)-g(n)| \leq h
$$

for all n in M . Clearly every qhm f is equivalent to one with $\mathrm{f}(0)=0$.
A $\mathrm{qhm} \mathrm{f}: \mathbf{Z} \longrightarrow \mathbf{Z}$ is called positive (in the non-strict sense) when there exists an integer a such that $\mathrm{f}(\mathrm{n}) \geq \mathrm{a}$ for all natural numbers n . It is called negative when there exists an integer b such that $f(n) \leq b$ for all natural numbers n. Clearly these concepts are invariant under equivalence. Equally clearly, we can always replace a positive [respectively, negative] qhm by an equivalent one with $\mathrm{a}=0$ [respectively, $\mathrm{b}=0$].

Lemma 1 Every quasihomomorphism $\mathrm{f}: \mathbf{Z} \longrightarrow \mathbf{Z}$ is either positive or negative.

Proof Assume f is a qhm with $\mathrm{f}(0)=0$ and additivity constant k. Assume f is neither positive nor negative. Let r be the smallest natural number with $f(r)>k$ and let s be the smallest natural number with $f(s)<-k$. Since $f(0)=0$, both r and s are strictly positive; clearly also $r \neq s$. If $r>s$ then $0<r-s<r$, so the minimality of r implies $f(r-s) \leq k$; but then

$$
\mathrm{f}(\mathrm{r})-\mathrm{f}(\mathrm{r}-\mathrm{s})-\mathrm{f}(\mathrm{~s})>\mathrm{k}-\mathrm{k}+\mathrm{k}=\mathrm{k}
$$

contrary to the additivity constant property of k . Similarly, if $\mathrm{s}<\mathrm{r}$ then $0<\mathrm{s}-\mathrm{r}<\mathrm{s}$, so the minimality of s implies $f(s-r) \geq-k$; but then

$$
\mathrm{f}(\mathrm{~s})-\mathrm{f}(\mathrm{~s}-\mathrm{r})-\mathrm{f}(\mathrm{r})<-\mathrm{k}+\mathrm{k}-\mathrm{k}=-\mathrm{k}
$$

contrary to the additivity constant property of k . QED
Let $\mathrm{f}: \mathbf{N} \longrightarrow \mathbf{Z}$ be a qhm from the additive monoid \mathbf{N}. The extension $\overline{\mathrm{f}}: \mathbf{Z} \longrightarrow \mathbf{Z}$ of f, defined by

$$
\bar{f}(\mathrm{n})=\left\{\begin{array}{ccc}
\mathrm{f}(\mathrm{n}) & \text { for } & \mathrm{n} \geq 0 \\
-\mathrm{f}(-\mathrm{n}) & \text { for } & \mathrm{n}<0,
\end{array}\right.
$$

is a qhm having the same additivity constant as f and satisfying

$$
\overline{\mathrm{f}}(-\mathrm{n})=-\overline{\mathrm{f}}(\mathrm{n})
$$

for all integers n . Clearly every qhm is equivalent to the extension of its restriction to \mathbf{N}. Since every positive $q h m \mathbf{Z} \longrightarrow \mathbf{Z}$ is equivalent to one mapping \mathbf{N} into \mathbf{N}, it is also equivalent to the extension of a qhm $\mathbf{N} \longrightarrow \mathbf{N}$. Similarly, every negative qhm $\mathbf{Z} \longrightarrow \mathbf{Z}$ is equivalent to minus the extension of a qhm $\mathbf{N} \longrightarrow \mathbf{N}$.

Lemma 2 Every quasihomomorphism $\mathbf{N} \longrightarrow \mathbf{N}$ is equivalent to one with additivity constant 3.

Proof Suppose $f: \mathbf{N} \longrightarrow \mathbf{N}$ is a qhm with additivity constant k and $f(0)=0$. By induction on m we can prove that

$$
\begin{equation*}
|\mathrm{f}(\mathrm{mn})-\mathrm{mf}(\mathrm{n})| \leq \mathrm{mk} \tag{1}
\end{equation*}
$$

for all natural numbers m and n. Consequently,

$$
\begin{equation*}
|n f(m)-m f(n)| \leq|f(m n)-m f(n)|+|n f(m)-f(m n)| \leq m k+n k=(m+n) k . \tag{2}
\end{equation*}
$$

From (1) we also have $f(m)-m f(1) \leq m k$ so that

$$
\begin{equation*}
f(m) \leq(f(1)+k) m \quad \text { for all natural numbers } m . \tag{3}
\end{equation*}
$$

So $f(1)+k$ is an element of the set

$$
S_{f}=\{u \in \mathbf{N} \mid f(m) \leq u m \text { for almost all } m \in \mathbf{N}\} .
$$

[Here "almost all" means "all but a finite number of".] Since \mathbf{N} is well ordered, S_{f} has a first element $\lceil\mathrm{f}\rceil$.

For $r \in \mathbf{N}$, we define the $q h m \quad r f: \mathbf{N} \longrightarrow \mathbf{N}$ in the usual way by $(r f)(m)=r f(m)$. Then define

$$
\begin{equation*}
\mathrm{f}^{+}: \mathbf{N} \longrightarrow \mathbf{N} \quad \text { by } \quad \mathrm{f}^{+}(\mathrm{r})=\lceil\mathrm{rf}\rceil . \tag{4}
\end{equation*}
$$

This means that

$$
\begin{equation*}
\mathrm{rf}(\mathrm{~m}) \leq \mathrm{f}^{+}(\mathrm{r}) \mathrm{m} \text { for almost all } \mathrm{m} \in \mathbf{N}, \quad \text { and } \tag{5}
\end{equation*}
$$

(6) $\quad \mathrm{rf}(\mathrm{m}) \leq \mathrm{um}$ for almost all $\mathrm{m} \in \mathbf{N}$ implies $\mathrm{f}^{+}(\mathrm{r}) \leq \mathrm{u}$.

By (5) and (2) we have

$$
\mathrm{f}^{+}(\mathrm{r}) \mathrm{m} \geq \mathrm{rf}(\mathrm{~m}) \geq \mathrm{mf}(\mathrm{r})-(\mathrm{r}+\mathrm{m}) \mathrm{k} .
$$

So $\mathrm{m}\left(\mathrm{f}^{+}(\mathrm{r})-\mathrm{f}(\mathrm{r})\right) \geq-(\mathrm{r}+\mathrm{m}) \mathrm{k}$ for almost all m . By taking m large enough, it follows that

$$
\begin{equation*}
\mathrm{f}^{+}(\mathrm{r})-\mathrm{f}(\mathrm{r}) \geq-\mathrm{k} . \tag{7}
\end{equation*}
$$

From (2) we see that

$$
\mathrm{rf}(\mathrm{~m}) \leq \mathrm{mf}(\mathrm{r})+(\mathrm{m}+\mathrm{r}) \mathrm{k} \leq(\mathrm{f}(\mathrm{r})+\mathrm{k}) \mathrm{m}+\mathrm{rk}
$$

and hence, by taking $m>2 k r$, we obtain $r f(m) \leq(f(r)+k) m$. By (6) it follows that

$$
\begin{equation*}
\mathrm{f}^{+}(\mathrm{r}) \leq \mathrm{f}(\mathrm{r})+\mathrm{k} . \tag{8}
\end{equation*}
$$

It follows from (7) and (8) that f and f^{+}are equivalent; but why is f^{+}a qhm? Well, by (5),

$$
(\mathrm{r}+\mathrm{s}) \mathrm{f}(\mathrm{~m})=\mathrm{rf}(\mathrm{~m})+\mathrm{sf}(\mathrm{~m}) \leq \mathrm{f}^{+}(\mathrm{r}) \mathrm{m}+\mathrm{f}^{+}(\mathrm{s}) \mathrm{m} ;
$$

so, by (6),

$$
\begin{equation*}
\mathrm{f}^{+}(\mathrm{r}+\mathrm{s}) \leq \mathrm{f}^{+}(\mathrm{r})+\mathrm{f}^{+}(\mathrm{s}) . \tag{9}
\end{equation*}
$$

On the other hand, by (5) and (8),
$\left(\mathrm{f}^{+}(\mathrm{r}+\mathrm{s})-\mathrm{f}^{+}(\mathrm{s})\right) \mathrm{m} \geq(\mathrm{r}+\mathrm{s}) \mathrm{f}(\mathrm{m})-\mathrm{f}^{+}(\mathrm{s}) \mathrm{m} \geq(\mathrm{r}+\mathrm{s}) \mathrm{f}(\mathrm{m})-(\mathrm{f}(\mathrm{s})+\mathrm{k}) \mathrm{m}=\mathrm{rf}(\mathrm{m})-\mathrm{km}$
for almost all natural numbers m. By (6) we deduce

$$
\begin{equation*}
\mathrm{f}^{+}(\mathrm{r}) \leq \mathrm{f}^{+}(\mathrm{r}+\mathrm{s})-\mathrm{f}^{+}(\mathrm{s})+\mathrm{k} . \tag{10}
\end{equation*}
$$

Combining (9) and (10), we get

$$
\begin{equation*}
0 \leq \mathrm{f}^{+}(\mathrm{r})+\mathrm{f}^{+}(\mathrm{s})-\mathrm{f}^{+}(\mathrm{r}+\mathrm{s}) \leq \mathrm{k} \tag{11}
\end{equation*}
$$

So f^{+}is indeed a qhm .
Similarly we can consider the set

$$
\mathrm{T}_{\mathrm{f}}=\{\mathrm{v} \in \mathbf{N} \mid \mathrm{vm} \leq \mathrm{f}(\mathrm{~m}) \text { for almost all } \mathrm{m} \in \mathbf{N}\} .
$$

For each v in T_{f}, using (3) we see that $v m \leq f(m) \leq(f(1)+k) m$ for almost all m; so certainly $\mathrm{v} \leq f(1)+\mathrm{k}$. So T_{f} is finite and so has a last element $\lfloor f\rfloor$. Then define a function

$$
\begin{equation*}
\mathrm{f}^{-}: \mathbf{N} \longrightarrow \mathbf{N} \quad \text { by } \quad \mathrm{f}^{-}(\mathrm{r})=\lfloor\mathrm{rf}\rfloor . \tag{12}
\end{equation*}
$$

Proceeding as before, we see that f^{-}is a qhm equivalent to f and satisfying

$$
\begin{equation*}
-\mathrm{k} \leq \mathrm{f}^{-}(\mathrm{r})+\mathrm{f}^{-}(\mathrm{s})-\mathrm{f}^{-}(\mathrm{r}+\mathrm{s}) \leq 0 \tag{13}
\end{equation*}
$$

Define a function

$$
\begin{equation*}
\overline{\mathrm{f}}: \mathbf{N} \longrightarrow \mathbf{N} \quad \text { by } \quad \overline{\mathrm{f}}(\mathrm{~m})=\text { the integer part of } \frac{\mathrm{f}^{-}(\mathrm{m})+\mathrm{f}^{+}(\mathrm{m})}{2} \tag{14}
\end{equation*}
$$

Using (11) and (13), we see that $\overline{\mathrm{f}}$ is a qhm with additivity constant ${ }^{1}$ no greater than $\frac{\mathrm{k}+3}{2}$.
Clearly also $\overline{\mathrm{f}}$ is equivalent to f . Now $\frac{\mathrm{k}+3}{2}<k$ for $k>3$. So we can use this process to reduce the additivity constant until it is ≤ 3. QED

Now here is the stronger result and short proof due to Norbert A'Campo [A'C].
Lemma 3 Every quasihomomorphism $\mathbf{Z} \longrightarrow \mathbf{Z}$ is equivalent to one with additivity constant 1 .

Proof For integers p and q with $q \neq 0$, write $\langle p: q\rangle$ for a choice of integer satisfying

$$
\left|\langle\mathrm{p}: \mathrm{q}\rangle-\frac{\mathrm{p}}{\mathrm{q}}\right| \leq \frac{1}{2}
$$

For any q hm $f: \mathbf{Z} \longrightarrow \mathbf{Z}$ with additivity constant k, define $f^{\prime}: \mathbf{Z} \longrightarrow \mathbf{Z}$ by

$$
\mathrm{f}^{\prime}(\mathrm{n})=\langle\mathrm{f}(3 \mathrm{kn}): 3 \mathrm{k}\rangle
$$

Then $\left|f^{\prime}(n)-f(n)\right| \leq\left|f^{\prime}(n)-\frac{f(3 k n)}{3 k}\right|+\left|\frac{f(3 k n)}{3 k}-f(n)\right| \leq \frac{1}{2}+k$ using (1) above. So f and f^{\prime} are equivalent. Moreover,

[^0]\[

$$
\begin{gathered}
\left|f^{\prime}(m+n)-f^{\prime}(m)-f^{\prime}(n)\right| \\
\leq\left|f^{\prime}(m+n)-\frac{f(3 k(m+n))}{3 k}\right|+\left|\frac{f(3 k m)}{3 k}-f^{\prime}(m)\right|+\left|\frac{f(3 k n)}{3 k}-f^{\prime}(n)\right|+\left|\frac{f(3 k(m+n))}{3 k}-\frac{f(3 k m)}{3 k}-\frac{f(3 k n)}{3 k}\right| \\
\leq \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{k}{3 k} \leq \frac{11}{6}<2 .
\end{gathered}
$$
\]

So f^{\prime} is a qhm with additivity constant 1 . QED

Let $\mathbf{R}_{\text {eff }}$ denote the set of equivalence classes $[f]$ of $q h m s f: \mathbf{Z} \longrightarrow \mathbf{Z}$. Addition is induced by pointwise addition of representative qhms. Multiplication is defined by composition of representative qhms. For qhms f and g, define $[f] \leq[g]$ when the $q h m$ $\mathrm{g}-\mathrm{f}$ is positive. The techniques of [St] and [OV] show that $\mathbf{R}_{\text {eff }}$ becomes an Archimedean ordered field.

Theorem $3 \mathbf{R}_{\text {eff }}$ is a complete ordered field.
For the proof of completeness see [A'C] or [Ar]. However, it seems that the construction of the infimum by [Ar] can be expressed as follows. Let S be a non-empty subset of positive elements of $\mathbf{R}_{\text {eff }}$ with no least element. Then, for each natural number n, the set $\left\{f^{+}(n) \mid f \in S\right\}$ has a first element $s(n)$. This defines a qhm $s: \mathbf{N} \longrightarrow \mathbf{N}$ whose extension $\overline{\mathrm{s}}: \mathbf{Z} \longrightarrow \mathbf{Z}$ is the infimum of S .

References

[St] Ross Street, An efficient construction of the reeal numbers, Gazette of the Australian Math. Soc. 12 (1985) 57-58.
[OV] Ben Odgers and Nguyen Hanh Vo, Analysis of an efficient construction of the reals (Vacation Scholar Project, January 2002); see <www.math.mq.edu.au / ~street/efficient.pdf>.
[A'C] Norbert A'Campo, A natural construction for the real numbers, arXiv:math.GN/0301015 v1 (3 Jan 2003).
[Ar] R.D. Arthan, The Eudoxus real numbers (preprint, September 2003).
Centre of Australian Category Theory
Macquarie University
New South Wales 2109
AUSTRALIA
email: street@math.mq.edu.au

[^0]: ${ }^{1}$ Actually with only a little more care we can see that $(k+2) / 2$ will work, so we can replace 3 by 2 in Lemma 2.

