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The description of the real numbers that we are concerned with here I learnt from

Steve Schanuel. An "efficient" real number is an equivalence class of "quasihomo-

morphisms" on the integers  Z ;  that is, endofunctions on the integers  Z which preserve

addition up to an "additivity constant".  The efficient reals are isomorphic to the "usual"

reals.  Peter Johnstone remembered a talk at the University of Sussex by Richard Lewis

with the same description.  Convinced of its need for wider circulation, I wrote the note [St]

outlining the construction and the proof that it formed a complete ordered field.  Almost

immediately Steve Schanuel noticed a problem with my suggested proof of completeness.

I have learnt too that Richard Lewis did not develop a direct proof of completeness.  I had a

suggestion for an approach but nothing was written until January 2002 when I set the topic

as part of a Vacation Scholar project for two bright undergraduate students Ben Odgers and

Nguyen Hanh Vo.  

My suggestion was to first prove a lemma that every efficient real number could be

represented by an endofunction whose additivity constant was no bigger than 3, say.  I

provided the Vacation Scholars with a handwritten proof (see Lemma 2 below) which is

described in their report [OV] as part of their account of completeness.  My proof of this

lemma was based on operations assigning to each (positive) quasihomomorphism  f

integers    f  and    f ;  see page 13 of [OV].   

Over the years other people have expessed interest in the construction to the point of

working seriously on it; some independently rediscovering it, others aware of [St].  For

example, in January 2003, I was informed of the appearance of [A'C]; the author was

unaware of [St].  An important feature of his completeness proof is the dependence on the

lemma I had suggested to Odgers and Vo.  What is more, he has a vastly simpler proof and

obtains an additivity constant of 1 (which we certainly knew was possible from the

identification of our reals with the "usual" reals).    

This month (on 18 September 2003) Rob Arthan (who does refer to [St]) kindly sent m e

his preprint [Ar] with an interesting new slant on the topic.  The fundamental tool in his

proof of completeness is the operation taking  f  to    f .  It had been my intention to look

back at [OV] and tidy up some of the arguments but I had not.  I now see that there are gaps

in the argument appearing in [OV].  I console myself that the techniques I suggested to

Odgers and Vo are used in both the proofs of completeness by [A'C] and [Ar].

What follows is some background to these events.  The proof of Lemma 1 is essentially

due to Odgers and Vo [OV].      

A function      f M:  → Z from a commutative monoid  M  to the ring  Z of integers is
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called a quasihomomorphism (or q h m) [St] when there exists a natural number  k  such

that

  f m n f m f n k( ) ( ) ( )+ − − ≤

for all  m  and  n  in  M.   We call  k  the additivity constant for the qhm.  

Two qhms  f  and  g  are equivalent when there is a natural number  h  such that

  f n g n h( ) ( )− ≤

for all  n  in  M.  Clearly every qhm  f  is equivalent to one with    f( )0 = 0.

A qhm      f : Z Z → is called positive (in the non-strict sense) when there exists an

integer  a  such that    f n a( ) ≥ for all natural numbers  n.  It is called negative when there

exists an integer  b  such that    f n b( ) ≤ for all natural numbers  n.  Clearly these concepts are

invariant under equivalence.  Equally clearly, we can always replace a positive

[respectively, negative] qhm by an equivalent one with  a = 0  [respectively,  b = 0]. 

Lemma 1 Every quasihomomorphism      f : Z Z → is either positive or negative.

Proof Assume  f  is a qhm with    f( )0 = 0  and additivity constant  k.  Assume  f  is neither

positive nor negative.  Let  r  be the smallest natural number with    f r k( ) > and let  s  be the

smallest natural number with    f s k( ) < − .  Since    f( )0 = 0,  both  r  and  s  are strictly positive;

clearly also  r ≠ s.  If    r s> then  0 < r – s < r ,  so the minimality of  r  implies    f r s k( )− ≤ ;

but then

  f r f r s f s k k k k( ) ( ) ( )− − − > − + =

contrary to the additivity constant property of  k.  Similarly, if  s < r  then  0 < s – r < s ,  so

the minimality of  s  implies    f s r k( )− ≥ − ;  but then

  f s f s r f r k k k k( ) ( ) ( )− − − < − + − = −

contrary to the additivity constant property of  k.  QED

Let      f : N Z → be a qhm from the additive monoid  N .  The extension      
s
f : Z Z →

o f f ,  defined by

  

s
f n

f n for n
f n for n

( )
( )
( ) ,

=
≥

− − <




0
0

is a qhm having the same additivity constant as  f  and satisfying  

    
s s
f n f n( ) ( )− = −

for all integers  n.  Clearly every qhm is equivalent to the extension of its restriction to  N .

Since every positive qhm    Z Z → is equivalent to one mapping  N into  N ,  it is also

equivalent to the extension of a qhm      N N → . Similarly, every negative qhm    Z Z →

is equivalent to minus the extension of a qhm      N N → .
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Lemma 2 Every quas ihomomorph i sm   N N → is equivalent to one with additivity

constant 3.

Proof Suppose      f : N N → is a qhm with additivity constant  k  and    f( )0 0= .  By

induction on  m  we can prove that  

(1)   f mn mf n mk( ) ( )− ≤

for all natural numbers  m  and  n.  Consequently,

(2)   nf m mf n f mn mf n nf m f mn mk nk m n k( ) ( ) ( ) ( ) ( ) ( ) ( )− ≤ − + − ≤ + = + .

From  (1)  we also have    f m mf mk( ) ( )− ≤1 so that

(3)   f m f k m( ) ( ( ) )≤ +1 for all natural numbers  m.

So    f k( )1 + is an element of the set

    S u f m um for almost all mf = ∈ ≤ ∈{ }N N( ) .

[Here "almost all" means "all but a finite number of".]  Since  N is well ordered,    Sf has a

first element    f .

For  r ∈N ,  we define the qhm      r f : N N → in the usual way by    ( )( ) ( )r f m r f m= .

Then define

(4)     f
+  →: N N by         f r+( ) =    r f  .

This means that

(5)   r f m f r m( ) ( )≤ + for almost all  m ∈N ,        and

(6)   r f m um( ) ≤ for almost all    m ∈N implies    f r u+ ≤( ) .

By (5) and (2)  we have  

  f r m r f m mf r r m k+ ≥ ≥ − +( ) ( ) ( ) ( ) .

So    m f r f r r m k( ( ) ( )) ( )+ − ≥ − + for almost all  m .  By taking  m  large enough, it follows

that

(7)   f r f r k+ − ≥ −( ) ( ) . 

From (2) we see that

  r f m mf r m r k f r k m rk( ) ( ) ( ) ( ( ) )≤ + + ≤ + +

and hence, by taking  m  >  2kr,  we obtain    r f m f r k m( ) ( ( ) )≤ + .  By (6) it follows that

(8)   f r f r k+ ≤ +( ) ( ) .

It follows from (7) and (8) that  f  and    f
+ are equivalent; but why is    f

+ a qhm? Well, by (5),

  ( ) ( ) ( ) ( ) ( ) ( )r s f m rf m sf m f r m f s m+ = + ≤ ++ + ;

so, by (6),

(9)   f r s f r f s+ + ++ ≤ +( ) ( ) ( ).

On the other hand, by (5) and (8),
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  ( ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( ( ) ) ( )f r s f s m r s f m f s m r s f m f s k m rf m km+ + ++ − ≥ + − ≥ + − + = −

for almost all natural numbers  m .  By (6) we deduce

(10)   f r f r s f s k+ + +≤ + − +( ) ( ) ( ) .

Combining (9) and (10),  we get

(11)   0 ≤ + − + ≤+ + +f r f s f r s k( ) ( ) ( ) .

So    f
+ is indeed a qhm.  

Similarly we can consider the set

    T v vm f m for almost all mf = ∈ ≤ ∈{ }N N( ) .

For each  v  in    Tf ,  using (3) we see that    vm f m f k m≤ ≤ +( ) ( ( ) )1 for almost all  m;  so

certainly    v f k≤ +( )1 .  So    Tf is finite and so has a last element    f  .  Then define a function 

(12)      f
−  →: N N by         f r−( ) =    rf  .

Proceeding as before, we see that    f
− is a qhm equivalent to  f  and satisfying

(13)   − ≤ + − + ≤− − −k f r f s f r s( ) ( ) ( ) 0 .

Define a function  

(14)     f : N N → by    f m( ) = the integer part of   
  

f m f m− ++( ) ( )
2

.

Using (11) and (13), we see that    f is a qhm with additivity constant1 no greater than  
  

k + 3
2

.

Clearly also    f is equivalent to  f .  Now   
  

k
k

+ <3
2

for  k > 3.  So we can use this process to

reduce the additivity constant until it is ≤ 3 . QED

Now here is the stronger result and short proof due to Norbert A'Campo [A'C].

Lemma 3  Every quas ihomomorph i sm   Z Z → is equivalent to one with additivity

constant 1.

Proof For integers  p  and  q  with  q ≠ 0,  write    p q: for a choice of integer satisfying

  
p q

p
q

: − ≤ 1
2

.

For any qhm      f : Z Z → with additivity constant  k ,  define      ′  →f : Z Z by

  ′ =f n f kn k( ) ( ):3 3 .

Then  
  

′ − ≤ ′ − + − ≤ +f n f n f n
f kn

k
f kn

k
f n k( ) ( ) ( )

( ) ( )
( )

3
3

3
3

1
2

using (1) above.  So  f  and

  ′f are equivalent.  Moreover,
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  ′ + − ′ − ′f m n f m f n( ) ( ) ( )

  
≤ ′ + − + + − ′ + − ′ + + − −f m n

f k m n
k

f km
k

f m
f kn

k
f n

f k m n
k

f km
k

f kn
k

( )
( ( )) ( )

( )
( )

( )
( ( )) ( ) ( )3

3
3
3

3
3

3
3

3
3

3
3

  
≤ + + + ≤ <1

2
1
2

1
2 3

11
6

2
k
k

.

So    ′f is a qhm with additivity constant  1. QED

Let      Reff denote the set of equivalence classes  [f]  of qhms      f : Z Z → .  Addition is

induced by pointwise addition of representative qhms.  Multiplication is defined by

composition of representative qhms.  For qhms  f  and  g ,  define  [f] ≤ [g]  when the qhm

  g f− is positive.  The techniques of [St] and [OV] show that      Reff becomes an Archimedean

ordered field.  

Theorem 3     Reff is a complete ordered field. 

For the proof of completeness see [A'C] or [Ar].  However, it seems that the

construction of the infimum by [Ar] can be expressed as follows.  Let  S  be a non-empty

subset of positive elements of      Reff with no least element.  Then, for each natural number

n ,  the set  
  

f n f S+ ∈{ }( ) has a first element    s n( ).  This defines a qhm      s : N N → whose

extension        
s
s : Z Z → is the infimum of  S.  
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